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a b s t r a c t

Two models of heat conduction, based on higher-order approximations to the dual-phase-lag consti-
tutive relation, are considered. Initial value problems for equations, describing the models, are studied.
Stable solutions to the problems manifest clear unphysical behavior with negative values of temperature.
This implies that the equations cannot serve as appropriate models of heat conduction.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The dual-phase-lag (DPL) model of heat conduction was pro-
posed in Refs. [1,2] as an improved theory compared to the classic
model, based on Fourier's law and described by the heat conduction
equation. Fourier's law is valid under the assumption of local
thermodynamic equilibrium, which fails in very small dimensions
and short time scales [3] as well as the classic model. The corner-
stone of the DPL model is the constitutive relation

q
�
x; t þ tq

� ¼ �kVTðx; t þ tTÞ; (1.1)

where tq and tT are positive time (or phase) lags. If tq ¼ 0 and tT ¼
0 Eq. (1.1) becomes Fourier's law.

Eq. (1.1) is equivalent to the single-phase-lag (SPL) constitutive
relation

qðx; t þ tÞ ¼ �kVTðx; tÞ: (1.2)

with t ¼ tq � tT . Both relations are sensible only if t � 0. Initial
value problems in the framework of the SPL model are ill-posed
(with unstable solutions) [4e6]. Therefore, the phase-lag consti-
tutive relations (1.1) and (1.2) per se have no real physical meaning.

A first-order approximation to Eq. (1.1) with respect to both tq
and tT is given by the Jeffreys-type constitutive relation [7,8]

�
tqvt þ 1

�
q ¼ �kðtTvt þ 1ÞVT : (1.3)

This relation and the energy equation

vtT þ divq ¼ Q ; (1.4)

where Q≡Qðx; tÞ is the heat source term, and the volumetric heat
capacity is equated, for simplicity, to unity, yield the Jeffreys-type
equation [3,7,9]

�
tqv

2
t þ vt

�
T � kðtTvt þ 1ÞDT ¼ �1þ tqvt

�
Q : (1.5)

The DPL model of heat conduction in the form of the Jeffreys-type
equation received widespread attention, see Ref. [10] and refer-
ences therein. However, physical anomalies and unphysical effects
in the framework of this model were reported in Refs. [10e12].
Therefore, this model cannot in general serve as an appropriate
model of heat conduction.

Besides the first-order approximation (1.3) higher-order ap-
proximations, leading to higher-order DPL models, were also
considered in literature, see Refs. [5,13e21]. A second-order
approximation in tq and a first-order approximation in tT yield
the constitutive relation

�
1
2
t2qv

2
t þ tqvt þ 1

�
q ¼ �kðtTvt þ 1ÞVT :

This relation and the energy Eq. (1.4) yield the equationE-mail address: rukol@ammp.ioffe.ru.
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�
1
2
t2qv

3
t þ tqv

2
t þ vt

�
T � kðtTvt þ 1ÞDT ¼

�
1þ tqvt þ 1

2
t2qv

2
t

�
Q :

(1.6)

In Refs. [13,14] it was found that solutions of this equation are stable
if tq <2tT and unstable if tq >2tT . This means that in the latter case
the solutions do not, in general, exist, and, therefore, Eq. (1.6)
cannot serve as a physical model.

Second-order approximations both in tq and tT yield the
constitutive relation

�
1
2
t2qv

2
t þ tqvt þ 1

�
q ¼ �k

�
1
2
t2Tv

2
t þ tTvt þ 1

�
VT :

This relation and the energy Eq. (1.4) yield the equation

�
1
2
t2qv

3
t þ tqv

2
t þ vt

�
T � k

�
1
2
t2Tv

2
t þ tTvt þ 1

�
DT

¼
�
1þ tqvt þ 1

2
t2qv

2
t

�
Q : (1.7)

In Ref. [14] it was found that solutions of this equation are stable if
tq < ð2þ

ffiffiffi
3

p
ÞtT and unstable if tq > ð2þ

ffiffiffi
3

p
ÞtT . This means that in

the latter case the solutions do not, in general, exist, and, therefore,
Eq. (1.7) cannot serve as a physical model. In Ref. [20] more
restrictive thermodynamic conditions ð2�

ffiffiffi
3

p
ÞtT < tq < ð2þ

ffiffiffi
3

p
Þ

tT , following from the second law, were established.
To the best of the author's knowledge there is still no study

devoted to the question whether the higher-order approximations
to the DPL model preserve nonnegative temperature?

In this paper an answer to this question is provided.We consider
initial value problems for Eqs. (1.6) and (1.7) are considered. These

problems differ from the problem studied in Ref. [10]: the funda-
mental difference is in the equations. The stable solutions to both
the problems manifest clear unphysical behavior with negative
values of temperature.

2. Initial value problem for Eq. (1.7) in 3D with a short
positive localized source

Consider Eq. (1.7) in the three-dimensional space�
1
2
t2qv

3
t þ tqv

2
t þ vt

�
T � k

�
1
2
t2Tv

2
t þ tTvt þ 1

�
DT

¼
�
1þ tqvt þ 1

2
t2qv

2
t

�
Q ; x2ℝ3; t > � q; (2.1)

with a positive Gaussian source of finite duration

Qðx; tÞ ¼ psðxÞc½�q;0�ðtÞ; (2.2)

where

psðxÞ ¼ 1� ffiffiffiffiffiffi
2p

p
s
�3 exp

 
�
		x		2
2s2

!

and

c½�q;0�ðtÞ ¼
8<
:

1
q
; �q< t � 0;

0; t >0:

Note that the initial time is t ¼ �q, the source is equal to zero for
t >0 and normalized to unity. Initial conditions for Eq. (2.1) are

T
		
t¼�q

¼ 0; vtT
		
t¼�q

¼ 0; v2t T
		
t¼�q

¼ 0: (2.3)

The solution to the problem (2.1) and (2.3) is given by

Tðx; tÞ ¼ 1

ð2pÞ3
Z
ℝ3

FTðx; tÞe�ixxdx;

where

FTðx; ,Þ ¼
Z
ℝ3

TðxÞeixxdx

is the Fourier transform of the solution, which is given by (see
Appendix A)

l1;2 are given by Eq. (A.13), and other coefficients are calculated by
Eqs. (A.7)e(A.12). In the limit q/0 the Fourier transform is given by

FTðx; tÞ ¼ e�s2jxj2=2


Eel1t þ el2t

�
F cos Bt þ G

B
sin Bt

��
; t >0:

(2.5)

Due to the spherical symmetry the solution can be recast as

Tðx; tÞ≡Tðr; tÞ ¼ 1
2p2r

Z∞
0

r FTðr; tÞsinðrrÞdr (2.6)

with

FTðr; tÞ≡FTðx; tÞ; r ¼ jxj; r ¼ jxj:
Figs. 1 and 2 present the solutions to the problem (2.1) and (2.3)

obtained with the dimensionless parameters k ¼ 1, tq ¼ 1 and
tT ¼ 0:3. The solutions were obtained by numerical evaluation of
the integral (2.6). The Fourier transform FTðx; tÞ, Eq. (2.5), decays

FTðx; tÞ ¼ e�s2jxj2=2
q

�
Ztþq

t

�
Eel1t

0 þ el2t
0


F cos Bt0 þ G

B
sin Bt0

�

dt0≡e�s2jxj2=2

� 1
q

(
E
el1t

0

l1
þ el2t

0

l22 þ B2



Fðl2 cos Bt0 þ B sin Bt0Þ þ G

B
ðl2 sin Bt0 � B cos Bt0Þ

�)			tþq

t0¼t
; t >0;

(2.4)
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