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Abstract

The purpose of this paper is to present a finite element approximation of the scalar hyperbolic wave equation written in mixed form,
that is, introducing an auxiliary vector field to transform the problem into a first-order problem in space and time. We explain why the
standard Galerkin method is inappropriate to solve this problem, and propose as alternative a stabilized finite element method that can
be cast in the variational multiscale framework. The unknown is split into its finite element component and a remainder, referred to as
subscale. As original features of our approach, we consider the possibility of letting the subscales to be time dependent and orthogonal to
the finite element space. The formulation depends on algorithmic parameters whose expression is proposed from a heuristic Fourier
analysis.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In most engineering problems dealing with waves, the
wave equation is written in irreducible form, that is, with
a single scalar unknown g depending on the spatial variable
x and time t, so that if c is the wave speed this equation
reads

1

c2
o

2
ttg� Dg ¼ f ; ð1Þ

where o
2
tt � otot is the second order time derivative, D is the

Laplacian operator and f is a given forcing term. This
equation needs to be solved in a spatial domain X � Rd

(d ¼ 1, 2 or 3) with appropriate boundary conditions and
in a time interval ½0; T �, giving gðx; 0Þ and otgðx; 0Þ as initial
conditions.

However, in some cases it is convenient to consider the
mixed form of (1), which consist in solving for g as well

as for a vector function uðx; tÞ the problem

lgotgþr � u ¼ fg; ð2Þ
luotuþrg ¼ f u; ð3Þ

where lg > 0 and lu > 0 are coefficients such that c2 ¼
ðlgluÞ

�1 and the forcing terms fg and f u must be such that
luotfg �r � f u ¼ f . Another possibility to transform (1)
into a first order system is to define n ¼ otg and u ¼ rg.
This is the natural option in elastodynamics [4], although
in many other physical applications, such as acoustic waves
or gravity waves in fluids, the original problem is in fact
(2)–(3) and its irreducible form (1). We shall briefly discuss
an example of each situation in the following section. It is
clear however that the linear problem (2)–(3) is only a mod-
el for more involved situations, either in solid mechanics or
in nonlinear waves in shallow waters, cases in which the
mixed form is mandatory.

The differential operator in (1) is of second order in both
space and time, whereas (2)–(3) is a first order evolution
problem with first order spatial derivatives. The most pop-
ular approach to deal with (1) is to use the Galerkin
method for the spatial discretization and then to integrate
in time using a finite difference scheme (see for example
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[15]). Numerical difficulties are considered to be concen-
trated on the time integration scheme, giving for granted
that the Galerkin method is optimal for the spatial discret-
ization of the Laplace operator. Therefore, research has
been focused on devising time integration schemes for (1)
(or vector counterparts) with given design properties.

Much less attention has been paid to the mixed form (2)
and (3) of the wave problem. As in most mixed problems,
there is a compatibility condition between the interpolation
spaces for g and u which can be expressed as an inf–sup con-
dition (see [5] for background, for example). As mentioned
in Section 3, this condition on the interpolation of g and u is
in fact similar to the condition for pressure and velocity in
the case of the Stokes problem or the Darcy problem, but
even if it is satisfied it does not guarantee stability of g in
the space where it must belong. Our objective will be to
present a formulation allowing equal and continuous inter-
polation for g and u. Apart from simplifying the numerical
implementation, this has two additional benefits. On the
one hand, we will show that improved stability on g can
be obtained with respect to some classical methods that sat-
isfy the inf–sup condition. On the other hand, the classical
Lagrange interpolation naturally allows for mass lumping
through the use of special quadrature rules, a requirement
to design explicit time integration schemes and not always
possible using some interpolations satisfying the inf–sup
condition (see, e.g., [4] and references therein).

Our formulation is based on the variational multiscale
approach in the format introduced in [16,17]. The basic
idea is to split the unknowns into a resolvable component,
which can be reproduced by the discretization method (in
our case finite elements) and the remainder, which we will
call sub-grid scale or subscale. Rather than solving exactly
for the latter, the formulation results from a closed form
approximation for the subscales, which is designed in order
to capture their effect on the discrete finite element solu-
tion. This leads to a formulation that allows the use of
equal g–u interpolations. We prove analytically this fact
in a particular case, only aiming to explain the stabilization
mechanism introduced by the approximation of the
subscales.

This paper is organized as follows. In Section 2, we state
the initial and boundary value problem to be solved, both
in its differential and in its weak form. We also present two
examples of wave problems that will serve us to illustrate a
discussion on the way to scale the equations. The Galerkin
space discretization is presented in Section 3, where the rea-
sons for its failure are explained. The main contribution of
this work is presented in Section 4, where a stabilized finite
element method is proposed. After presenting the basis of
the formulation, its application to the mixed form of the
wave equation is studied in detail. The algorithmic param-
eters on which the formulation depends are designed on the
basis of a Fourier analysis of the problem, similar to that
proposed already in [8] for the incompressible Navier–
Stokes equations, although extended to general first-order
systems. A stability estimate is then proved in the particu-

lar case in which the space of subcales is orthogonal to the
finite element space, a possibility introduced in [10] to sta-
bilize velocity–pressure interpolations in the Stokes prob-
lem (see also [9] for a full analysis of the method applied
to the linearized Navier–Stokes equations). Section 5 pre-
sents the results of some numerical experiments only
intended to demonstrate that the stabilized formulation
proposed in fact suppresses the instabilities of the Galerkin
method. Some concluding remarks close the paper.

2. Problem statement

2.1. Initial and boundary value problem

The differential equations (2) and (3) need to be supplied
with adequate initial and boundary condition to define the
problem to be solved.

As for the boundary conditions, we consider two possi-
bilities. Let the boundary oX be split into two disjoint sets
CI and CR. On the former, we consider prescribed the scalar
g and on CR the normal component of vector u is assumed
to be given. Without loss of generality, we will consider
both boundary conditions as homogeneous. The initial
conditions to be considered are of the form gðx; 0Þ ¼
g0ðxÞ and uðx; 0Þ ¼ u0ðxÞ.

The differential form of the initial and boundary value
problem to be considered consists therefore in finding
gðx; tÞ and uðx; tÞ such that

lgotgþr � u ¼ fg; in X; t > 0; ð4Þ
luotuþrg ¼ f u; in X; t > 0; ð5Þ
g ¼ 0; on CI; t > 0; ð6Þ
n � u ¼ 0; on CR; t > 0; ð7Þ
gðx; 0Þ ¼ g0ðxÞ; in X; ð8Þ
uðx; 0Þ ¼ u0ðxÞ; in X: ð9Þ

Eqs. (4) and (5) can be re-written as

lg 0

0 luI

� �
ot

g

u

� �
þ

0 r � ð�Þ
rð�Þ 0

� �
g

u

� �
¼

fg

f u

� �
;

where I is the d � d identity matrix.
At this point it is convenient to introduce some nota-

tion. Given X, a space of functions defined on X, its norm
will be denoted by k � kX , and the space of functions such
that their X-norm is Ck continuous in the time interval
½0; T � will be denoted by Ckð½0; T �; X Þ. We will be interested
only in the cases k ¼ 0 and k ¼ 1. Three particular spaces X

will be relevant in the presentation: L2ðXÞ, H 1ðXÞ, the space
of functions in L2ðXÞ with derivatives also in L2ðXÞ, and
Hðdiv;XÞ, the space of vector functions with components
and divergence in L2ðXÞ. A bold character will be used to
denote the vector counterpart of the first two spaces.

As it will be explained below, for regular enough
data the problem is well posed for g 2 C0ð½0; T �; V gÞ\
C1ð½0; T �; L2ðXÞÞ and u 2 C0ð½0; T �;VuÞ \ C1ð½0; T �;L2ðXÞÞ,
where
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