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Abstract

Solving constitutive models that incorporate the effects of plasticity and slip gradients is often complicated by the non-local nature of
the models. This work presents a finite element solution to a crystal plasticity constitutive model that includes kinematic and stress effects
due to slip gradients. The foundation of the model is a three term multiplicative decomposition of the deformation gradient that results in
a second order differential equation in terms of the stress that drives slip. Converting the equation into a weak form results in an integral
equation that includes first order derivatives of the stress as well as boundary conditions for the stress and gradients of slip rate for each
slip system. Using this weak form, an incremental finite element method is developed to solve the constitutive model within a finite ele-
ment solution to the equilibrium equation. Results for the compression of a two-dimensional plate show the effects of including slip
gradient effects in the constitutive model and indicate the tendency for localization of the slip and dislocation density into narrow bands
separating regions of nearly constant dislocation density and long range strain.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Finite element; Constitutive behavior; Crystal plasticity; Gradient plasticity

1. Introduction

The actions of dislocations in a crystal lattice are very
complex and it is their actions that are often the primary
factor in inelastic deformations in metals and other crystal-
line materials. Capturing the relevant phenomena of the
collective behavior of individual dislocations is the aim of
constitutive models of crystal plasticity. For simple materi-
als, in the rational mechanics sense, material behavior at a
point is determined by the history of deformation at the
point. One phenomenon that does not fit into the definition
of a simple material is the long range effects of dislocations
distributed through the crystal lattice. The reason for this is
these effects are related to the spatial distribution of the dis-
locations and cannot be reduced to pointwise behavior.

In this work we present a finite element solution to a
previously developed constitutive model [28] that incorpo-
rates the kinematic and kinetic effects of dislocations dis-
tributed through the crystal lattice. These long range
effects are related to gradients in plastic deformation in
which dislocations remain in the lattice to ensure continuity
between neighboring regions of varying plastic deforma-
tion. Including these effects in the constitutive model results
in a deformation rate consistency equation that is a second
order differential equation in terms of the elastic stress.
Determining the material response then requires a scheme
to solve the differential equation along with specification
of the appropriate boundary conditions.

There is a diverse array of methods that have been
used to incorporate dislocations in general, and specifi-
cally gradient effects, into models for the mechanical
behavior of crystalline materials. For example, lattice
defects have long been described in the language differen-
tial geometry and gauge field theory [6,39,41]. Steinmann
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[61] discusses the relationship between differential geome-
try and the family of Nye dislocation tensors [54] and
Lazar [44] has constructed a theory relating the Cartan
torsion of the crystal lattice to a moment stress. In closer
connection to standard continuum mechanics, but still
within the context of differential geometry, Clayton
et al. [10] have developed a three term multiplicative
decomposition of the deformation gradient in which the
additional term is due to defect arrangement and residual
stress. The differential geometry of such a formulation is
discussed in detail and a constitutive model is presented
by Clayton et al. [11]. Micropolar [19] and Cosserat [14]
continua have been used to include point rotations as
kinematic variables to model rotation gradients that
accompany slip gradients. Forest and co-workers [25,26]
have been the principal contributors in this area, as well
as contributions by Le and Stumpf [45,46]. The elastic
theory of a continuous distribution of dislocations, devel-
oped in the early works of Kröner [42,43], Mura [49–51]
and Willis [65], has been used by a number of authors
to relate the stress to dislocation distributions and behav-
iors. Using this theory as a foundation, Acharya [1–3] has
developed a complete theory of continuum plasticity in
terms of the dislocation density tensor as the primary var-
iable and developed a closed set of equations, up to spec-
ification of the constitutive models for plasticity and
dislocation tensor, that define the material behavior.
The discrete dislocation model of Van der Giessen and
Needleman [63] uses a set of rules for dislocation motion,
nucleation and annihilation to predict the set of discrete
dislocations then superimposes the deformation field of
each dislocation on an elastic continuum. In work more
closely related to that presented below, several authors
have formulated yield surface and crystal plasticity consti-
tutive models that incorporate gradient effects. Mühlhaus
and Aifantis [48] developed a one parameter yield surface
that included second and fourth order gradients of the
effective plastic strain and required solution of a forth
order differential equation for evolution of the yield sur-
face. Fleck and Hutchinson [22,23] and Fleck et al. [24]
have developed a model that includes both a plasticity
gradient modified yield stress along with a curvature
deformation and couple stress theory somewhat analo-
gous to standard yield surface models. The ‘‘Mechanism
Based Strain Gradient” model [27,37,53,55] uses the ideas
of Fleck and Hutchinson and an assumed deformation
field on a sub-computational scale to develop the consti-
tutive model. Gurtin [30,31] has developed a single crystal
plasticity constitutive model that includes classical macro-
scopic work conjugate terms as well as microforce terms
that do work as a result of plastic slip. Acharya and
Basani [4] have developed a crystal plasticity model in
which they propose modifying the critical resolved shear
stress for a slip system by a functional relationship on a
tensor measure of dislocation density. Evers et al. [20]
develop a single crystal material model which incorpo-
rates geometrically necessary dislocations in the slip sys-

tems hardness and also develops a long range stress that
acts as a slip system back stress and is derived from ideas
similar to those presented below in Section 2.2.

The work to implement these models in solution
schemes is limited to relatively simple methods such as
assumed deformation field analytical solutions and a lim-
ited number of (primarily) two-dimensional, finite element
implementations. The reason for this is the non-local nat-
ure of the constitutive models do not easily fit within typi-
cal frameworks for the numerical solution of solid
mechanics problems. Among the solutions, Mühlhaus
and Aifantis [48] and Deborst and Mühlhaus [15] present
a finite element solution of a reduced form of their model
which is accommodated in standard displacement based
finite element solution schemes through the addition of
the effective plastic strain to the nodal degrees of freedom.
In the early development of the Mechanism Based Strain
Gradient model [27,55,37] several analytical solutions for
assumed deformation fields including bending of a thin
film, torsion of a thin wire, and cavity expansion [36] were
presented. Since that time the model has been implemented
in two and three-dimensional finite element solutions and
principally used to investigate the size effect in indentation
testing [38,62]. The yield surface models of Fleck and
Hutchinson [22,23] and Fleck et al. [24] were used to
develop a class of two-dimensional finite elements suitable
for use with strain gradient theories [59]. Huang et al. [35]
and Xia and Hutchinson [66] have used the Fleck–Hutch-
inson model to study mode I and mode II fracture using
both assumed deformation field solutions and a two-
dimensional finite element method. Chen and Fleck [9]
have implemented the model in a two-dimensional finite
element package and studied the size effects in shear defor-
mation of a metallic foam. Evers et al. [21] demonstrated
their model by simulating the uniaxial plane strain defor-
mation of a collection of 12 grains, each of which is sepa-
rately meshed and shows the gradients effects inherent in
the otherwise macroscopically uniform deformation of
the polycrystal structure.

There are, as well, some efforts to provide solutions to
the models that don’t necessarily fit within standard contin-
uum constitutive modeling. Perhaps the most widely used is
the discrete dislocation plasticity model of Van der Giessen
and Needleman [63] which has been exercised in a number
of two-dimensional simulations. For example, Cleveringa
et al. [12] have shown the local stress fields around a mode
I crack are affected by the long range stresses due to dislo-
cations; Balint et al. [5] have shown the model reproduces
the grain size dependence of hardness; Nicola et al. [52]
have used the model to analyze the behavior of a thin film
bonded to a substrate undergoing thermal straining; and
Deshpande et al. [16] have shown the size and Bauschinger
effects in the tension and compression of single crystals.
The model of Acharya [1–3], based on the elastic theory
of a continuous distribution of dislocations, has been
implemented by Roy and Acharya [58] in a three-dimen-
sional finite element method and demonstrated the behav-
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