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a b s t r a c t

Fractional order derivatives are global operators for which the time fractional order derivative possesses
memory character while the space ones reflects non-local behavior. In this paper, a new time and space
fractional CattaneoeChristov upper-convective derivative flux heat conduction model is suggested
where the space fractional derivative is characterized by the weight coefficient of forward versus
backward transition probability. Governing equation is formulated and solved by L1-approximation and
shifted Grünwald formula. Results show that the fractional parameters, time and location parameters,
relaxation parameter, weight coefficient and convection velocity have remarkable impacts on heat
transfer characteristics. Temperature distribution profiles are monotonically decreasing in a concave
form versus time fractional parameter with existing of relaxation parameter, while in a convex formwith
space fractional parameter evolution under three special conditions, i.e., the right region, the larger
weight coefficient (g � 0.5) and smaller convection parameter u.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

A considerable attention has been devoted to heat conduction
[1e3] due to its extensive application in widespread fields. The
classical 1-D constitutive model to describe heat conduction is
deduced by the Fourier's law [4] which provides away to study heat
conduction and becomes the basis to study the heat transfer pro-
cess in the past few years. However, a paradox for the Fourier's
model [5e7] is that it is felt instantly throughout the whole of the
medium even for small times. This behavior contradicts the prin-
ciple of causality [8,9] which issued an infinite propagation velocity.
In order to overcome this problem, a modified constitutive model is
proposed by Cattaneo [10] which takes the relaxation parameter
into account.

The Cattaneo constitutive relation only involves partial time
derivative, higher spatial gradients may be required [11] for a
complete process. Revising the time derivative as the Oldroyds'
upper-convected derivative, Christov [12] proposed the frame-
indifferent generalization of Cattaneo model:

qþ x

�
vq
vt

þ V$Vq� q$VV þ ðV$VÞq
�
¼ �k grad T ; (1)

where q, V, k, x and T refer to heat flux vector, velocity vector,
thermal conductivity, relaxation parameter and temperature dis-
tribution function, respectively. The propagation velocity [13] is
defined as v ¼ ðD=xÞ1=2, and it reduces to the classical Fourier's law
with an infinite propagation velocity for x/0. The new flux model
satisfies the objectivity principle and attracts a large number of
scholars' attention. Straughan [14] considered the thermal con-
vection in a horizontal layer of incompressible Newtonian fluid
with gravity acting downward. Using CattaneoeChristov heat flux
model, Han et al. [15] studied coupled flow and heat transfer of an
upper-convected Maxwell fluid above a stretching plate, analyzing
the dynamic property with different parameters effect and pre-
senting a comparison of Fourier's Law and the CattaneoeChristov
heat fluxmodel. Basing upon CattaneoeChristov theory, Hayat et al.
[16] considered temperature dependent thermal conductivity in
stagnation point flow toward a nonlinear stretched surface with
variable thickness, results showed that temperature profile de-
creases for higher thermal relaxation parameter. Sui et al. [17]
introduced the CattaneoeChristov model to study and analyze
the boundary layer heat and mass transfer in upper-convected
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Maxwell nanofluid past a stretching sheet with slip velocity. More
literature related to CattaneoeChristov model can be seen in
Refs. [18e21].

Fractional-order partial differential equation is a generalization
and development of integer order one. The fractional derivative
indicates that the position we consider is not only depended on its
nearby positions but also on the whole positions, while the integer
order operator is only a local one. For the time fractional derivative,
Du et al. [22] indicated that its physical meaning is an index of
memory. The space one reflects a non-local character and it can
describe transfer process in a highly inhomogeneousmediummore
adequately by comparing with experiment data [23]. The study for
the application of fractional derivative operator has attracted
considerable attentions. Zaslavsky [24] reviewed the new concept
of fractional kinetics for systems with Hamiltonian chaos, proving
that fractional kinetics is valuable in different important physical
phenomena. Henry et al. [25] introduced the temporal fractional
cable equations to model electrotonic properties of spiny neuronal
dendrites, predicting that postsynaptic potentials propagating can
arrive at the soma faster along dendrites with larger spine densities
and be sustained at higher levels over longer times. Chen et al. [26]
proposed variable-order fractional derivative model which can
agree significantly better with experimental data. For more refer-
ences about the application of fractional operators, see in
Refs. [27e29].

Motivated by above mentioned discussions, we firstly extend
the study of heat conduction with time and space fractional
Cattaneo-Christov equation. By considering the velocity as a con-
stant and the generalized derivative of time [13] and space frac-
tional order [30], Eq. (1) can be rewritten into the following one
dimensional form:

qþx

�
ta�1v

aq
vta

þu
vq
vx

�
¼�k

 
g
vbTðx;tÞ

vxb
�ð1�gÞv

bTðx;tÞ
vð�xÞb

!
; (2)

where t is introduced to keep the dimension of constitutive
equation balance and its dimension is “s”, u is the convection ve-
locity along the x direction, g (0 � g� 1) is the weight coefficient of
forward versus backward transition probability, the symbol va

vta is
the Caputo's time fractional derivative [31] of order a(0 < a � 1),
defined as:

vaTðx; tÞ
vta

¼ 1
Gð1� aÞ

Zt
0

1
ðt � tÞa

vTðx; tÞ
vt

dt; (3)

where the symbol Gð$Þ represents the Euler gamma function.

The symbols vb

vxb and vb

vð�xÞb are the left and right Riemann-

Liouville fractional derivatives of order b (0 <b � 1), the corre-
sponding definitions [32] on a finite domain [a,b] are given by:

vbTðx; tÞ
vxb

¼ 1
Gð1� bÞ

v

vx

Zx
a

ðx� xÞ�bTðx; tÞdx; (4)

and

vbTðx; tÞ
vð�xÞb

¼ �1
Gð1� bÞ

v

vx

Zb
x

ðx� xÞ�bTðx; tÞdx; (5)

respectively.

2. Mathematical formulation

First, we give the mass conservation equation:

cr
vT
vt

þ cru
vT
vx

þ div q ¼ 0; (6)

where c and r are the specific heat capacity and mass density,
respectively.

By the combination of (2) and (6), one arrives at the time and
space fractional Cattaneo-Christov heat conduction equation:

xta�1v
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#
¼ 0;

(7)

with the initial and boundary conditions:

Tðx;0Þ ¼ 1
L4
x2ðL� xÞ2; vTðx;0Þ

vt
¼ 0; (8)

and

Tð0; tÞ ¼ TðL; tÞ ¼ 0; (9)

respectively. Here D ¼ k/(cr) is the thermal diffusivity coefficient.
For the sake of simplifying our study, the non-dimensional quan-
tities are introduced:

t/tt*; x/Lx*; x/tx*;u/
L
t
u*; r/

Lbþ1

tD
r*;1� r/

Lbþ1

tD

�
1� r*

�
:

(10)

Submitting the non-dimensional quantities into (7)e(9), we can
obtain the dimensionless governing equation with initial and
boundary conditions (the superscript * is omitted for simplicity):

x
v1þaT
vt1þa

þ xu
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vt
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g
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#
¼ 0;

(11)

Tðx;0Þ ¼ x2ð1� xÞ2; vTðx;0Þ
vt

¼ 0; (12)

Tð0; tÞ ¼ Tð1; tÞ ¼ 0: (13)

By setting b¼ 1 and u¼ 0, Eq. (11) reduces to the time fractional
Cattaneo model [8] while Eq. (11) reduces to the classical heat
conduction model [4] when b ¼ 1, x ¼ 0 and u ¼ 0.

3. Numerical discretization method

Firstly, we define xi ¼ ih (i ¼ 0,1,2, …,m, mh ¼ 1) and tj ¼ jt
(j ¼ 0,1,2, …,n) where h is the grid size in space and t is grid size in
time. Prior to obtaining the numerical solution of Eq. (11), some
useful definitions of difference scheme for the time and space
fractional derivative are presented.

The Caputo fractional derivative of order 0 <a � 1 with respect
to time at t ¼ tj is approximated by L1-approximation [33], the
discrete scheme is given as follows:
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