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a b s t r a c t 

In this short communication, we analyse the potential of the natural stress formulation (NSF) (i.e. align- 

ing the stress basis along streamlines) for computing planar flows of an Oldroyd-B fluid around sharp 

corners. This is the first attempt to combine the NSF into a numerical strategy for solving a transient 

fluid flow problem considering the momentum equation in Navier–Stokes form (the elastic stress enter- 

ing as a source term) and using the constitutive equations for natural stress variables. Preliminary results 

of the NSF are motivating in the sense that accuracy of the numerical solution for the extra stress tensor 

is improved near to the sharp corner. Comparison studies among the NSF and the Cartesian stress for- 

mulation (CSF) (i.e. using a fixed Cartesian stress basis) are conducted in a typical benchmark viscoelastic 

fluid flow involving a sharp corner: the 4 : 1 contraction. The CSF needs a mesh approximately 10 times 

smaller to capture similar near singularity results to the NSF. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Flow through a contraction is a benchmark problem in com- 

putational rheology [9] , where viscoelastic fluids exhibit regions 

of strong shearing near the walls and uniaxial extension along 

the centreline. The complex flow patterns that evolve have been 

the subject of much interest in the literature, with attention fo- 

cused on: (i) vortex behaviour, both near the re-entrant corner (so- 

called lip vortices) and salient corners, (ii) variation of the pressure 

drops across the contraction with strength of fluid elasticity (Weis- 

senberg number), (iii) particle paths upstream of the contraction 

and (iv) velocity overshoots along the axis of symmetry. 

The main numerical approaches to simulate this flow, have 

been finite-difference [21] , finite-element [8] and finite-volume 

[2] . Combinations of the methods, e.g. hybrid finite-element finite- 

volume [1] as well as Lagrangian and semi-Langrangian methods 

[15,22] are also commonly employed. However, a key feature of all 

numerical schemes so far employed is that they discretize the vis- 

coelastic constitutive equations formulated using a fixed Cartesian 

basis for the stress. We refer to this formulation as the Cartesian 

stress formulation (CSF) of the constitutive equations. An alterna- 

tive approach is to exploit the mathematical structure of the upper 
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convected derivative and align the stress basis with the flow using 

streamlines. This formulation uses the velocity field to span the 

stress field, the formulation of the constitutive equations in this 

setting being termed the natural stress formulation (NSF). 

The natural stress formulation was first used by Renardy [17] , to 

demonstrate its ability to eliminate the downstream stress insta- 

bility encountered during numerical integration around re-entrant 

corners [18] . Although the idea of transforming the stress tensor 

components to a basis aligned with streamlines for computation 

purposes had been recognised previously in [3,11] . However, the 

full power of the approach has not yet been exploited numerically 

in a mathematically systematic way for the full contraction geom- 

etry. 

A key feature of the geometry is the presence of the re-entrant 

corner at which the velocity gradients and stress are infinite. The 

singularity determination for the Oldroyd-B fluid was first given 

by Hinch [10] , with the asymptotic structure of the local solution 

completed through the upstream wall boundary layer by Renardy 

[19] and the boundary layer at the downstream wall in [16] and 

[4,5] . An important aspect of the solution analysis is that the natu- 

ral stress formulation is an efficient way to transmit the necessary 

stress information from the upstream to downstream regions. This 

is explicitly calculated in [6,7] for the UCM fluid, illustrating that 

the necessary stress information is contained in high-order terms 

of the asymptotic expansions when using the Cartesian stress com- 
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ponents, with the natural stress variables being able to uncouple 

and extract this information. 

The success of the natural stress formulation near the re- 

entrant corner singularity, both for asymptotics and numerical 

computation, are the motivating reasons to investigate the formu- 

lation for the full contraction geometry. 

2. Mathematical formulation 

The governing equations for the incompressible flow of a 

viscoelastic fluid we adopt are the continuity, momentum and 

Oldroyd-B constitutive equations in dimensionless form 

∇ · v = 0 , (1) 

Re 

(
∂v 

∂t 
+ v · ∇v 

)
= −∇ p + β∇ 

2 v + ∇ · T , (2) 

T + Wi 

(
∂T 

∂t 
+ ( v · ∇ ) T − ( ∇v ) T − T ( ∇v ) 

T 

)
= 2(1 − β) D . (3) 

Here v is the velocity field, p is an arbitrary isotropic pressure, T 

is the polymeric contribution to the extra-stress tensor and D = 

1 
2 (∇v + ( ∇v ) 

T ) is the rate-of-strain tensor. The dimensionless pa- 

rameters are the Reynolds number Re, Weissenberg number Wi 

and retardation parameter β ∈ [0, 1] (the dimensionless retardation 

time or solvent viscosity ratio) defined by 

Re = 

ρUL 

ηs + ηp 
, Wi = 

λ1 U 

L 
, β = 

ηs 

ηs + ηp 
, (4) 

where ρ is the density, U and L are characteristic length and flow 

speeds respectively, λ1 the relaxation time, ηs the solvent viscosity 

and ηp the polymer viscosity. The above governing equations have 

been made non-dimensional using L for the spatial variables, U for 

the velocity scaling and (ηp + ηs ) U/L the pressure and stress scal- 

ings. The total stress is σ = −pI + τ, with the extra-stress tensor 

τ = T + 2 βD being rheologically composed of polymer and Newto- 

nian solvent contributions. 

2.1. Cartesian stress formulation 

Denoting by i and j the unit vectors in fixed Cartesian x and y 

directions, we have 

v = u i + v j = ( u, v ) T (5) 

and 

T = T 11 ii 
T + T 12 

(
ij T + ji T 

)
+ T 22 jj 

T . (6) 

The component form of the polymer constitutive Eq. (3) for the 

Cartesian extra-stresses T 11 , T 12 , T 22 is 

T 11 + Wi 

(
∂T 11 

∂t 
+ u 

∂T 11 

∂x 
+ v 

∂T 11 

∂y 
− 2 

∂u 

∂x 
T 11 − 2 

∂u 

∂y 
T 12 

)

= 2 ( 1 − β) 
∂u 

∂x 
, 

T 22 + Wi 

(
∂T 22 

∂t 
+ u 

∂T 22 

∂x 
+ v 

∂T 22 

∂y 
− 2 

∂v 
∂y 

T 22 − 2 

∂v 
∂x 

T 12 

)

= 2 ( 1 − β) 
∂v 
∂y 

, 

T 12 + Wi 

(
∂T 12 

∂t 
+ u 

∂T 12 

∂x 
+ v 

∂T 12 

∂y 
− ∂v 

∂x 
T 11 − ∂u 

∂y 
T 22 

)

= ( 1 − β) 

(
∂u 

∂y 
+ 

∂v 
∂x 

)
. 

(7) 

2.2. Natural stress formulation 

Aligning the polymer stress basis along streamlines, introduces 

the so called natural stress variables. We follow the construction of 

Renardy [17] (see also [20,23] ). Introducing the configuration ten- 

sor A by 

T = 

(1 − β) 

Wi 
( A − I ) , (8) 

the polymer constitutive Eq. (3) becomes [
∂A 

∂t 
+ ( v · ∇ ) A − ( ∇v ) A − A ( ∇v ) 

T 

]
+ 

1 

Wi 
( A − I ) = 0 . (9) 

We now express A in terms of the dyadic products of the velocity 

v and an orthogonal vector w defined as follows 

w = 

1 

| v | 2 ( −v , u ) 
T 
, 

so that 

A = λv v T + μ( v w 

T + w v T ) + νw w 

T , (10) 

where λ, μ, ν are termed the natural stress variables. However, a 

detraction of this construction is that the basis vectors v, w are de- 

generate when the velocity field vanishes. As such, it is convenient 

to use instead, unit vectors in their directions. Hence, we write 

A = 

ˆ λˆ v ̂ v 
T + ˆ μ( ̂ v ̂  w 

T + ˆ w ̂ v 
T 
) + ˆ ν ˆ w ̂  w 

T 
, (11) 

where 

ˆ v = 

v 

| v | , ˆ w = | v | w , ˆ λ = | v | 2 λ, ˆ μ = μ, ˆ ν = 

ν

| v | 2 . 
(12) 

The scaled natural stress variables ˆ λ, ˆ μ, ̂  ν then satisfy the compo- 

nent equations [
∂ ̂  λ

∂t 
+ 

2 ̂  μ

| v | 2 
(

v 
∂u 

∂t 
− u 

∂v 
∂t 

)
+ | v | 2 ( v · ∇) 

(
ˆ λ

| v | 2 
)

+ 2 ̂  μ| v | 2 ∇ · w 

]

+ 

1 

Wi 

(
ˆ λ − 1 

)
= 0 , [

∂ ˆ μ

∂t 
+ 

(
ˆ λ − ˆ ν

| v | 2 
)(

u 

∂v 
∂t 

− v 
∂u 

∂t 

)
+ ( v · ∇) ̂  μ + ˆ ν| v | 2 ∇ · w 

]

+ 

ˆ μ

Wi 
= 0 , [

∂ ̂  ν

∂t 
+ 

2 ̂  μ

| v | 2 
(

u 

∂v 
∂t 

− v 
∂u 

∂t 

)
+ 

1 

| v | 2 ( v · ∇) 
(

ˆ ν| v | 2 )
]

+ 

1 

Wi 

(
ˆ ν − 1 

)
= 0 , (13) 

with 

| v | 2 ∇ . w = | v | 2 
(

∂ 

∂x 

(
− v 

| v | 2 
)

+ 

∂ 

∂y 

(
u 

| v | 2 
))

= 

1 

| v | 2 
(

(v 2 − u 

2 ) 

(
∂v 
∂x 

+ 

∂u 

∂y 

)
+ 4 u v 

∂u 

∂x 

)
. 

The component form of (8) is 

T 11 = 

( 1 − β) 

Wi 

(
−1 + 

1 

| v | 2 
(

ˆ λu 

2 − 2 ̂  μuv + ˆ νv 2 
))

, 

T 12 = 

( 1 − β) 

Wi | v | 2 
(

ˆ λuv + ˆ μ
(
u 

2 − v 2 
)

− ˆ νuv 

)
, 

T 22 = 

( 1 − β) 

Wi 

(
−1 + 

1 

| v | 2 
(

ˆ λv 2 + 2 ̂  μuv + ˆ νu 

2 
))

, 

(14) 
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