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a b s t r a c t 

A third order accurate, in time and space, finite element scheme for the numerical simulation of three- 

dimensional time-dependent flow of the molecular stress function type of fluids in a generalized formu- 

lation is presented. The scheme is an extension of the K-BKZ Lagrangian finite element method presented 

by Marín and Rasmussen (2009). 

© 2017 Published by Elsevier B.V. 

1. Introduction 

The modelling of the flow behavior of polymer melts is needed 

to evaluate the design of polymer processing operations. These in- 

volve shaping molten polymers into plastic products, enabling a 

production of key importance for our way of life. The insight into 

the fluid dynamics of entangled liquids and polymer melts was ini- 

tiated by phenomenologically based differential constitutive equa- 

tions such as the Giesekus (1962) [1] and Phan-Thien and Tanner 

(1977) [2] models, whereas integral constitutive equations started 

with the K-BKZ [3,4] model. A mathematical generalization of non- 

linear elasticity to viscoelasticity. All these models are versatile 

constitutive equations that are still used to model the flow of en- 

tangled polymer systems. 

The understanding of the fluid dynamics of polymer melts still 

evolves [5–14] . This is a consequence of the developments in ex- 

tensional rheometry [15–17] . In particular, the theoretical inter- 

pretation of measured extensional viscosities of idealized poly- 

mer systems [18–20] has represented a challenging task. At least 

two of the previously referred constitutive equations seem to con- 

tain concepts capable of explaining the fluid mechanics of ideal- 

ized entangled melt systems. Either considering monomeric fric- 

tion [11,12,21,22] or interchain pressure [14] . These theoretical ef- 

forts have been made aiming to predict the complex flow behavior 

of entangled polymer systems in general, but particularly for poly- 

mer melts, driven by a need for accurate design of polymer pro- 
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duction processes. Accurate design indeed requires knowledge of 

the flow behavior of polymer melts. Moreover, polymer processing 

is geometrically complex, time dependent, and mostly complicated 

by the presence of moving melt surfaces or interfaces in three di- 

mensions (3D). In the formulation of a numerical method for poly- 

mer melt flow, the choice of the particular constitutive equation to 

be implemented is important. Here we focus on the type of con- 

stitutive equation originally introduced by M.H. Wagner [6,14] . This 

molecular stress function constitutive equation is of the integral 

type. 

Computationally the Lagrangian finite element method [23–

26] is currently the only implemented technique for solving 3D 

time dependent flow problems with integral constitutive equations 

[27–30] . The formulation in [30] is capable of handling the molec- 

ular stress function constitutive equation, whereas all previous for- 

mulations are based on the K-BKZ model. Other steady [31] or un- 

steady [32–38] 2D formulations for the flow of K-BKZ fluids have 

been published with a variety of numerical concepts. Especially 

for the molecular stress function type of constitutive equation, the 

only other published method is the 2D steady code by P. Olley and 

M.H. Wagner [39] . Note that, in a Lagrangian method, interface or 

surface movement is a natural boundary condition due to the par- 

ticle formulation. Such a formulation is able to handle large dis- 

placements of surfaces or interfaces. 

In this work, the purpose is to develop a more accurate im- 

plementation of the three dimensional Lagrangian finite element 

method for the flow of molecular stress function constitutive 

equations. The previously published papers concerning the time- 

dependent flow of this type of fluid are in 2D [40–43] , although 

they are all performed with a 3D code [30] , actually second or- 
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der convergent in both the time and spatial discretization. For the 

more simplified constitutive equation of the K-BKZ type, the first 

fully 3D time dependent study was published seventeen years ago 

[44] . The lack of published 3D computations is a consequence of 

insufficient computational speed. An increase in convergence or- 

der is one way to enhance the computational accuracy and effi- 

ciency. The latter is related to the possibility of reducing the num- 

ber of nodes and increasing the time step size. The method in 

[30] converged second order with respect to the spatial and time 

discretizations. They are both increased to third order accuracy in 

the new numerical method presented here. 

2. The stress tensor 

The stress tensor is described by a generalized molecular stress 

function model. This is an extension of the well established factor- 

ized K-BKZ model. 

In the continuum mechanical analysis the deformation gradient 

field is defined - in Cartesian coordinates - by the components of 

the displacement gradient tensor as 

E i j (x , t, t ′ ) = 

∂x i 
∂x ′ 

j 

, i = 1,2,3 and j = 1,2,3 . (1) 

The coordinates x = (x 1 , x 2 , x 3 ) and x ′ = (x ′ 
1 
, x ′ 

2 
, x ′ 

3 
) are the particle 

positions of the same particle at the present time t and (all) the 

past times t ′ , respectively. In a Lagrangian kinematics specification 

the independent variables are the initial particle positions of the 

particles x at the present time t . The dependent variables are con- 

sequently the positions of the particles x ′ at the past times t ′ . Bold 

symbols are used as matrix/vector notation in all formulae. 

The Finger strain tensor is defined as follows 

B (x , t, t ′ ) = E (x , t, t ′ ) · E (x , t, t ′ ) † (2) 

where the symbol ‘ † ’ denotes the transpose tensor operation. 

Here we use the basic assumption of incompressibility allow- 

ing the third invariant of the Finger strain tensor to be unity: 

I 3 (x , t, t ′ ) = det [ B (x , t, t ′ )] = 1 . We can further write that: 

det [ E (x , t, t 0 ) ] = 1 (3) 

which represents the equation of continuity. Furthermore, the first 

and second invariants are given as 

I 1 (x , t, t ′ ) = tr B and I 2 (x , t, t ′ ) = tr B 

−1 = 

1 

2 

{ [ tr B ] 2 − tr [ B · B ] } . 
(4) 

The last equality is a consequence of the incompressibility and the 

Cayley–Hamilton theorem: B 

−1 = B 

2 − I 1 B + I 2 δ. The symbol ‘ −1 ’ 

denotes the inverse tensor operation and δ is the unit tensor. Note 

that the dependence on ( x , t, t ′ ) is shortened in the notation. 

The isotropic strain tensors, S u , are defined as [45] 

S u (x , t, t ′ ) = ψ 1 ,u (t − t ′ , I 1 , I 2 )(δ − B ) + ψ 2 ,u (t − t ′ , I 1 , I 2 )(B 

−1 − δ) 

(5) 

with u = 1 , . . . , U . ψ 1, u and ψ 2, u are scalar functions that depend 

on the elapsed time and the invariants. 

The stress tensor σ may be written as follows 

σ = −
U ∑ 

u =1 

∫ t 

−∞ 

M u (t − t ′ ) f u (x , t, t ′ ) 2 S u (x , t, t ′ ) d t ′ (6) 

in which M u (t − t ′ ) are the memory functions and f u represent 

scalar quantities referred to as the molecular stress functions. In 

the case of f u being unity, the above stress is identical to the well 

established factorized K-BKZ model [3,4] . 

The molecular stress functions f u , with an initial value 

f u (x , t ′ , t ′ ) = 1 , are defined by using a set of differential equations 

in the present time t as 

∂ 

∂t 
f u (x , t, t ′ ) 

= F u 

(
P 1 , . . . , P V , 

∂ 

∂t 
P 1 , . . . , 

∂ 

∂t 
P V , f 1 (x , t , t ′ ) , . . . , f U (x , t , t ′ ) 

)
(7) 

where P v (t − t ′ , I 1 (x , t , t ′ ) , I 2 (x , t , t ′ )) , v = 1 , . . . , V, are scalar func- 

tions depending on the first and second invariants, I 1 ( x , t, t ′ ) and 

I 2 ( x , t, t 
′ ), and the relative time t − t ′ . 

3. Finite element discretization 

Many of the details described in this section resemble the 

developments found in [30] and, most importantly, the present 

method is identical to the one in [29] for the case f u (x , t, t ′ ) = 1 , 

i.e. the factorized K-BKZ model. 

In the Lagrangian specification the equation of motion can be 

written in the following way [46] : 

ρ
∂ 2 x 

∂t 2 
= −∇ ·

(
p δ − σ

)
+ ρ g 

(8) 

where ρ is the fluid density, p is the pressure and g is the grav- 

itational acceleration vector. The discretization of the continuity 

equation (3) and of the equation of motion (8) follow the mixed 

Galerkin finite element method [47] . The Galerkin weak forms of 

the continuity equation and the momentum balance multiplied by 

arbitrary weight functions ψ and φ, respectively, follow the proce- 

dure by Rasmussen [27,28] : ∫ 
�

[ det [ ̂  E ( ̂  x , t, t 0 )] − 1] ψ 

i d � = 0 , (9) 

0 = 

∫ 
�

ρ

[
∂ 2 ̂ x 

∂t 2 
− g 

]
φ j d � −

∫ 
�

ˆ p ∇φ j d �

+ 

∫ 
�

̂ σ · ∇φ j d � + 

∫ 
�n 

[
n ·

(
ˆ p δ − ̂ σ

)]
φ j d �n , 

(10) 

where i = 1,…, M and j = 1,…, N. M represents the total number of 

pressure nodes and N is the total number of coordinate nodes. �

denotes the fluid domain, whereas �n are the surfaces with natural 

boundary conditions. n is the outward unit vector to the referred 

surface and ∇ indicates the gradient operator. The approximated 

quantities of the exact variables are supplied with a hat. 

The particular case of the particle positions at the present time, 

t , is 

ˆ x = 

N ∑ 

i =1 

x 

i φi (11) 

where the particle positions at any time, t ′ , are approximated as 

follows 

ˆ x 

′ = 

N ∑ 

i =1 

x 

′ i (x 

i ) φi . (12) 

Likewise, the pressure field can be described as: 

ˆ p ( ̂  x ) = 

M ∑ 

n =1 

p n (x 

n ) · ψ 

n . (13) 

The approximation of the particle positions is introduced directly 

into the displacement gradient tensor required to define the spatial 

discretization of the stress: 

ˆ E ( ̂  x , t, t ′ ) = 

N ∑ 

i =1 

x 

i ∇ 

′ φi (14) 
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