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a b s t r a c t 

We present a numerical investigation of the three-dimensional coarsening dynamics of a nematic liq- 

uid crystal-isotropic fluid mixture using a conserved phase field model. The model is a coupled system 

for a generalized Cahn–Hilliard equation for the order parameter φ, related to the volume fraction of 

the nematic component, and a simplified de Gennes–Prost evolution equation for the director field n , 

which describes the mean orientation of the rigid rod-like, liquid crystal molecules. We find that, as in 

the two-dimensional system, the orientational distortion induced by interfacial anchoring has profound 

effects both on the morphology and the coarsening rate. However, we identify significant differences in 

the three-dimensional and two-dimensional coarsening processes. In particular, we find a remarkable, 

new 3-stage late coarsening process with markedly different coarsening rates in the three-dimensional 

bicontinuous phase separation with homeotropic anchoring, unseen in the two-dimensional system. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Phase separation of binary mixtures is a fundamental process in 

materials processing. The important phenomenon is characterized 

by a fast transition into an ordered phase consisting of domains 

rich in either component and followed by a very slow coarsening 

process until a steady state is reached [6,7] . 

Mixtures in which one of the components is a liquid crystal or 

a liquid crystalline polymer offer a significant potential for appli- 

cations and have received increased attention [8,9,21,27–29,36] . 

We focus here on the three-dimensional phase separation 

and coarsening dynamics of a binary mixture of a nematic 

liquid crystal and an isotropic fluid, like a polymer. We use 

a conserved phase field model (Model B in the nomenclature 

of Hohenberg and Halperin [19] ) which couples a generalized 

Cahn–Hilliard equation for the order parameter φ, related to the 
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volume fraction of the species, with a simplified de Gennes–

Prost evolution equation [17] for the director field n , which 

describes the mean orientation of the rigid rod-like, liquid crystal 

molecules. The same model, which stems from that considered 

in [37] , has been used in the two-dimensional study of Mata 

et al. [27] and the current work is a follow-up report on our 

findings for the corresponding three-dimensional system. Similar 

phase field models have been used extensively in phase separation 

[1–5,12–14,18,20,22,23,26,31,35,37–41] . A more general model of de 

Gennes type, using a tensor order parameter, is described in [33] . 

We find that the global distortion of the orientational field in 

the nematic-rich phase, induced by strong interfacial anchoring, 

has a profound effect on the morphology and coarsening rate, 

just as it happens in 2D. Specifically, the steady-state morphology 

of the system can be largely controlled by the type of interfacial 

anchoring and the coarsening rate is significantly affected by 

anchoring-induced long-range orientational distortion. However, 

we observe substantial differences between the three-dimensional 

and two-dimensional coarsening dynamics. In particular, we 

identify a remarkable, new 3-stage late coarsening process with 

markedly different coarsening rates in the three-dimensional 

bicontinuous phase separation with homeotropic anchoring ( n 

perpendicular to the surface), unseen in the two-dimensional 

system. We also obtain a notable minimal surface (a Schwarz 
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P Surface) for one instance of 3D phase separation with planar 

anchoring conditions. 

The rest of the paper is organized as follows. In Section 2 we 

provide a description of the phase field model and the numerical 

methodology employed is described in Section 3 . A summary of 

our numerical results is given in Section 4 and some concluding 

remarks are given in Section 5 . Finally, data of an accuracy and 

convergence test of the numerical method are provided in the 

Appendix. 

2. Mathematical model 

We focus on a system consisting of a conserved mixture of 

a nematic liquid crystal and an isotropic fluid, which under- 

goes phase separation in three dimensional space. The model is 

the same as that used in [27] except that here our domain is 

three-dimensional. The system can be described with an order 

parameter φ related to the species concentration ( (1 + φ) /2 rep- 

resents the nematic liquid crystal concentration and (1 − φ) / 2 the 

isotropic fluid concentration) and with the director field n , which 

is a measure of the mean molecular orientation in the nematic 

liquid crystal phase. The pure, bulk phases are identified with 

φ = 1 and φ = −1 for the nematic liquid crystal and the isotropic 

fluid, respectively. A narrow neighborhood of the level set φ = 0 

provides a diffuse interface between the two species. 

The free energy density of the system has three parts: a mixing 

energy f mix , a bulk, orientational distortion energy of the nematic, 

f bulk , and the anchoring energy related to the preferential orienta- 

tion of the liquid crystal molecules at interfaces, f anch [37] : 

f (φ, n , ∇φ, ∇n ) = f mix + 

1 + φ

2 

f bulk + f anch , (1) 

where 

f mix = 

λ

2 

[
|∇φ| 2 + 

(φ2 − 1) 2 

2 ε 2 

]
, (2) 

f bulk = 

K 

2 

[
∇n : (∇n ) T + 

(| n | 2 − 1) 2 

2 δ2 

]
, (3) 

f anch = 

⎧ ⎨ 

⎩ 

A 

2 

(n · ∇φ) 2 (planar anchoring) , 

A 

2 

[| n | 2 |∇φ| 2 − (n · ∇φ) 2 
]

(homeotropic anchoring). 

(4) 

The parameter λ in (2) is the strength of the mixing energy 

density and ε is the capillary width. Eq. (3) is the regularized 

Frank energy in which the elastic constants for splay, twist, and 

bend are all equal to K and (| n | − 1) 2 / (2 δ2 ) is a penalty term to 

approximately enforce the constraint | n | = 1 . Finally, in (4) , A is 

the volumetric anchoring strength, which is related to the surface 

anchoring strength W by εW = (2 
√ 

2 / 3) A [37] . Some bounds on 

the parameter A are necessary for thermodynamic stability [16] . 

The specific choice of f anch for planar (homeotropic) anchoring in 

(4) favors alignment of the director field n tangential (normal) to 

nematic-isotropic fluid interfaces. 

We consider a domain � = [0 , L ] × [0 , L ] × [0 , L ] . The total free 

energy is 

F = 

∫ 
�

f ( φ, n , ∇φ, ∇n ) dx. (5) 

The evolution of the order parameter is governed by the Cahn–

Hilliard equation [10,11] 

∂φ

∂t 
= ∇ · [ γ∇μ] , (6) 

where γ is the mobility, which in this work is taken to be 

constant, and 

μ = 

δF 

δφ
. (7) 

Using (2) –(4) we obtain 

μ = λ

[
−∇ 

2 φ + 

φ(φ2 − 1) 

ε 2 

]

+ 

K 

4 

[
∇n : (∇n ) T + 

(| n | 2 − 1) 2 

2 δ2 

]
+ μanch , (8) 

where 

μanch 

= 

{
−A ∇ · [ (n · ∇φ) n ] (planar anchoring) , 

−A ∇ ·
[| n | 2 ∇φ − (n · ∇φ) n 

]
(homeotropic anchoring) . 

(9) 

We evolve the director field using the simplified Leslie-Ericksen 

theory of de Gennes and Prost [17] , first used by Yue et al. [37] , 

and in the two-dimensional work of Mata et al. [27] , 

∂n 

∂t 
= −τ

δF 

δn 

, 

where τ is Leslie twist viscosity, which can be physically mea- 

sured [17] . Then the coupled system of equations governing the 

phase separation of the mixture is 

1 

γ

∂φ

∂t 
= ∇ 

2 

[
λ

(
−∇ 

2 φ + 

φ3 − φ

ε 2 

)

+ 

K 

4 

(
∇n : (∇n ) T + 

(| n | 2 − 1) 2 

2 δ2 

)
+ μanch 

]
, (10) 

1 

τ

∂n 

∂t 
= K 

[
∇ ·

(
1 + φ

2 

∇n 

)
− 1 + φ

2 

(| n | 2 − 1) n 

δ2 

]
− g anch , (11) 

where μanch is given by (9) and 

g anch 

= 

{
A (n · ∇ φ) ∇ φ (planar anchoring) , 

A 

[ |∇φ| 2 n − (n · ∇φ) ∇φ
]

(homeotropic anchoring) . 
(12) 

We non-dimensionalize the system (9) –(12) by selecting charac- 

teristic time, length, and energy scales t c , L c , and E c , respectively. 

Then, the free energy parameters K, A , and λ are made dimen- 

sionless with E c / L c , γ with L 5 c / (E c t c ) , and τ with L 3 c / (E c t c ) . We 

choose the characteristic length scale L c = L/ 2 , i.e. one half the 

domain size. Denoting by K c and τ c characteristic values of the 

Frank elastic constant and the Leslie twist viscosity, respectively, 

we define characteristic energy and time scales by E c = aK c L c , 

t c = bL 3 c / (E c τc ) , respectively, where a and b are dimensionless con- 

stants. Following [27,37] , we take a = 1 / (6 . 708 × 10 −3 ) and b = 1 . 

We use the same letters to denote the dimensionless variables and 

parameters, so (9) –(12) can be considered to be in dimensionless 

form. We consider here only periodic boundary conditions . 

3. Numerical methodology 

We employ the same discretization as in [27] , except that here 

we write the Cahn–Hilliard equation as a second order system to 

avoid a direct discretization of the fourth order, biharmonic opera- 

tor and to use an efficient linear multigrid method [12,13] . The spa- 

tial discretization is second order with standard finite differences 

and periodic boundary conditions. The time integration is a lin- 

early implicit scheme, as the one considered in [1,12] , in which the 

implicit part is discretized using a second-order backward differ- 

ence formula (BDF) and the explicit part corresponds to a second 

order Adams-Bashforth method. The scheme can be written as 

3 
2 
φn +1 

1 
− 2 φn 

1 + 

1 
2 
φn −1 

1 


t 
= γ λ∇ 

2 φn +1 
2 + 2 F 

n − F 

n −1 , (13) 

φn +1 
2 = 

α

ε 2 
φn +1 

1 − ∇ 

2 φn +1 
1 , (14) 
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