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ABSTRACT

We present a numerical investigation of the three-dimensional coarsening dynamics of a nematic lig-
uid crystal-isotropic fluid mixture using a conserved phase field model. The model is a coupled system
for a generalized Cahn-Hilliard equation for the order parameter ¢, related to the volume fraction of
the nematic component, and a simplified de Gennes-Prost evolution equation for the director field n,
which describes the mean orientation of the rigid rod-like, liquid crystal molecules. We find that, as in
the two-dimensional system, the orientational distortion induced by interfacial anchoring has profound
effects both on the morphology and the coarsening rate. However, we identify significant differences in
the three-dimensional and two-dimensional coarsening processes. In particular, we find a remarkable,
new 3-stage late coarsening process with markedly different coarsening rates in the three-dimensional
bicontinuous phase separation with homeotropic anchoring, unseen in the two-dimensional system.
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1. Introduction

Phase separation of binary mixtures is a fundamental process in
materials processing. The important phenomenon is characterized
by a fast transition into an ordered phase consisting of domains
rich in either component and followed by a very slow coarsening
process until a steady state is reached [6,7].

Mixtures in which one of the components is a liquid crystal or
a liquid crystalline polymer offer a significant potential for appli-
cations and have received increased attention [8,9,21,27-29,36].

We focus here on the three-dimensional phase separation
and coarsening dynamics of a binary mixture of a nematic
liquid crystal and an isotropic fluid, like a polymer. We use
a conserved phase field model (Model B in the nomenclature
of Hohenberg and Halperin [19]) which couples a generalized
Cahn-Hilliard equation for the order parameter ¢, related to the
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volume fraction of the species, with a simplified de Gennes-
Prost evolution equation [17] for the director field nm, which
describes the mean orientation of the rigid rod-like, liquid crystal
molecules. The same model, which stems from that considered
in [37], has been used in the two-dimensional study of Mata
et al. [27] and the current work is a follow-up report on our
findings for the corresponding three-dimensional system. Similar
phase field models have been used extensively in phase separation
[1-5,12-14,18,20,22,23,26,31,35,37-41]. A more general model of de
Gennes type, using a tensor order parameter, is described in [33].

We find that the global distortion of the orientational field in
the nematic-rich phase, induced by strong interfacial anchoring,
has a profound effect on the morphology and coarsening rate,
just as it happens in 2D. Specifically, the steady-state morphology
of the system can be largely controlled by the type of interfacial
anchoring and the coarsening rate is significantly affected by
anchoring-induced long-range orientational distortion. However,
we observe substantial differences between the three-dimensional
and two-dimensional coarsening dynamics. In particular, we
identify a remarkable, new 3-stage late coarsening process with
markedly different coarsening rates in the three-dimensional
bicontinuous phase separation with homeotropic anchoring (n
perpendicular to the surface), unseen in the two-dimensional
system. We also obtain a notable minimal surface (a Schwarz
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P Surface) for one instance of 3D phase separation with planar
anchoring conditions.

The rest of the paper is organized as follows. In Section 2 we
provide a description of the phase field model and the numerical
methodology employed is described in Section 3. A summary of
our numerical results is given in Section 4 and some concluding
remarks are given in Section 5. Finally, data of an accuracy and
convergence test of the numerical method are provided in the
Appendix.

2. Mathematical model

We focus on a system consisting of a conserved mixture of
a nematic liquid crystal and an isotropic fluid, which under-
goes phase separation in three dimensional space. The model is
the same as that used in [27] except that here our domain is
three-dimensional. The system can be described with an order
parameter ¢ related to the species concentration ((1+ ¢)/2 rep-
resents the nematic liquid crystal concentration and (1 — ¢)/2 the
isotropic fluid concentration) and with the director field n, which
is a measure of the mean molecular orientation in the nematic
liquid crystal phase. The pure, bulk phases are identified with
¢ =1 and ¢ = —1 for the nematic liquid crystal and the isotropic
fluid, respectively. A narrow neighborhood of the level set ¢ =0
provides a diffuse interface between the two species.

The free energy density of the system has three parts: a mixing
energy fmix, @ bulk, orientational distortion energy of the nematic,
four and the anchoring energy related to the preferential orienta-
tion of the liquid crystal molecules at interfaces, f,,q, [37]:

f(¢ n, V¢ Vn) = fle ¢fbu1k + fanchv (1)
where
A (¢ — 1)
i = 2[ VoI + -5 } )
2 2
Soulk = 12<|:Vﬂ S(Vn)T + (|n|2821)j| (3)

g(n -Vo¢)? (planar anchoring),
fanch = A (4)
E[|n|2|Vq§|2 —(n-V¢)?] (homeotropic anchoring).

The parameter A in (2) is the strength of the mixing energy
density and ¢ is the capillary width. Eq. (3) is the regularized
Frank energy in which the elastic constants for splay, twist, and
bend are all equal to K and (|n| — 1)2/(282) is a penalty term to
approximately enforce the constraint |n| = 1. Finally, in (4), A is
the volumetric anchoring strength, which is related to the surface
anchoring strength W by eW = (2+/2/3)A [37]. Some bounds on
the parameter A are necessary for thermodynamic stability [16].
The specific choice of f,, for planar (homeotropic) anchoring in
(4) favors alignment of the director field n tangential (normal) to
nematic-isotropic fluid interfaces.

We consider a domain = [0, L] x [0, L] x
energy is

F:/ F(¢,m, Vb, Vin)dx. (5)
Q

The evolution of the order parameter is governed by the Cahn-
Hilliard equation [10,11]

% vyl (6)

where y is the mobility, which in this work is taken to be
constant, and

OF
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We evolve the director field using the simplified Leslie-Ericksen
theory of de Gennes and Prost [17], first used by Yue et al. [37],
and in the two-dimensional work of Mata et al. [27],
on SF
— =T,
at én
where 7 is Leslie twist viscosity, which can be physically mea-
sured [17]. Then the coupled system of equations governing the
phase separation of the mixture is
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where ., is given by (9) and
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We non-dimensionalize the system (9)-(12) by selecting charac-
teristic time, length, and energy scales t., L., and E., respectively.
Then, the free energy parameters K, A, and A are made dimen-
sionless with E./L;, y with L5 /(Ecte), and T with L?/(Ectc). We
choose the characteristic length scale L, =L/2, i.e. one half the
domain size. Denoting by K. and t. characteristic values of the
Frank elastic constant and the Leslie twist viscosity, respectively,
we define characteristic energy and time scales by E; = aK.L,
te = bL?/(EC‘L'C), respectively, where a and b are dimensionless con-
stants. Following [27,37], we take a = 1/(6.708 x 10-3) and b = 1.
We use the same letters to denote the dimensionless variables and
parameters, so (9)-(12) can be considered to be in dimensionless
form. We consider here only periodic boundary conditions.

3. Numerical methodology

We employ the same discretization as in [27], except that here
we write the Cahn-Hilliard equation as a second order system to
avoid a direct discretization of the fourth order, biharmonic opera-
tor and to use an efficient linear multigrid method [12,13]. The spa-
tial discretization is second order with standard finite differences
and periodic boundary conditions. The time integration is a lin-
early implicit scheme, as the one considered in [1,12], in which the
implicit part is discretized using a second-order backward differ-
ence formula (BDF) and the explicit part corresponds to a second
order Adams-Bashforth method. The scheme can be written as
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