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a b s t r a c t 

The effect of thixotropy on the two-dimensional spreading of a sessile drop is modelled using lubrica- 

tion theory. Thixotropy is incorporated by the inclusion of a structure parameter, λ, measuring structure 

build-up governed by an evolution equation linked to the droplet micromechanics. A number of mod- 

els are derived for λ coupled to the interface dynamics; these range from models that account for the 

cross-stream dependence of λ to simpler ones in which this dependence is prescribed through appropri- 

ate closures. Numerical solution of the governing equations show that thixotropy has a profound effect 

on the spreading characteristics; the long-time spreading dynamics, however, are shown to be indepen- 

dent of the initial structural state of the droplet. We also compare the predictions of the various models 

and determine the range of system parameters over which the simple models provide sufficiently good 

approximations of the full, two-dimensional spreading dynamics. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

Thixotropy is of central importance in a variety of applications, 

due to its presence in a wide range of fluids, which include nat- 

ural muds, slurries, clay suspensions, greases, paints, gels and ad- 

hesives [1] . The mechanism underlying thixotropy is normally at- 

tributed to the interactions of polymers, particles and colloids, for 

instance, within the fluid capable of forming a microstructure [2] ; 

the evolving microstructure modifies the internal stress of the fluid 

and consequently alters the rheological response. While in this pa- 

per, we will model thixotropy by the direct inclusion of a structure 

parameter, it has been shown that thixotropy and yield stress be- 

haviour can be the natural limit of viscoelastic behaviour, when 

the relaxation time is large, [3–5] . Structure parameter models 

can be seen to be a natural extension of viscoelastic thixotropy 

models when you take the structure parameter to be the trace 

of the conformation tensor. Thixotropy can have a dramatic effect 

upon the flow behaviour as exemplified by the chaotic regimes ob- 

served in numerical studies of a highly thixotropic fluid displaced 

by a Newtonian fluid [6] . Similarly, fingering instabilities are seen 

to grow exponentially, rather than algebraically during the injec- 

tion of a thixotropic fluid into a porous medium [7] . Additional 

flow regimes have also been found when gravity-driven flows of 
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thixotropic fluids have been studied [8–10] Finally, in capillary- 

driven levelling of a thixotropic fluid [11] , large variations in vis- 

cosity across a fluid layer were measured. In the present work, we 

will restrict our analysis to capillary-driven flows where inertia is 

negligible. 

The aforementioned studies have all used the lubrication ap- 

proximation as a key simplification which exploits the naturally 

occurring small aspect ratio; this permits solution for the depth 

dependence of the velocity field, and the derivation of an evolu- 

tion equation for the interface [12] . It is not possible, however, 

to remove the depth dependence completely in the presence of 

thixotropy using lubrication theory. Typically, one is left with a 

so-called “1.5D model” [13] characterised by a one-dimensional 

(1D) equation for the interface coupled to a two-dimensional equa- 

tion for the structure parameter, that must be integrated over the 

depth. Additional simplifications have been proposed to reduce this 

further through an averaged structure [10] or ‘fluidity’ [7] . This is 

further built upon by Livescu et al. [14] where a depth profile is 

assumed for the fluidity that is then linked to the structure param- 

eter at the substrate and the interface, yielding three 1D evolution 

equations. Alternatively, one can assume a depth profile for the 

structure parameter in the form of a polynomial [15] . Furthermore, 

an asymptotic approach is considered by Pritchard et al. [16] where 

the thixotropic properties are considered weak and enter at higher 

order. Our goal here is to solve a typical problem of interest, the 

evolution of a spreading droplet, and then assess which, if any, 

of the above simplifying approximations are appropriate via com- 

http://dx.doi.org/10.1016/j.jnnfm.2017.01.001 

0377-0257/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

http://dx.doi.org/10.1016/j.jnnfm.2017.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.01.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.uppal14@imperial.ac.uk
http://dx.doi.org/10.1016/j.jnnfm.2017.01.001
http://creativecommons.org/licenses/by/4.0/


2 A.S. Uppal et al. / Journal of Non-Newtonian Fluid Mechanics 240 (2017) 1–14 

Fig. 1. Schematic illustration of the coordinate system used to model the spreading. 

parisons with the solution of the 1.5D model through a paramet- 

ric study. It is noted by Pritchard et al. [16] that reduced models 

can be insufficient for confined thixotropic flows, due to the pres- 

ence of strong transverse gradients in the microstructure. However, 

this may not hold true for unconfined flows with free surfaces. In 

this present work, we seek to verify the validity of reduced mod- 

els with respect to free-surface flows in the presence of moving 

contact lines. 

The rest of this paper is organised as follows. In Section 2 , 

we provide details of the problem formulation, in which we set 

out the rheological model under consideration via a microstruc- 

ture derivation of the model. We also derive the governing 1.5D 

model using the lubrication approximation, and demonstrate its 

connection to simpler models. In Section 3 , we discuss our numer- 

ical results, focusing on the comparison of the predictions provided 

by the various models derived in Section 2 . Finally, concluding re- 

marks are provided in Section 4 . 

2. Formulation 

2.1. Governing equations 

We consider a slender droplet of density ρ and viscosity ˆ μ ly- 

ing on a horizontal, rigid and impermeable substrate; the overlying 

gas phase is assumed to be hydrodynamically passive and its dy- 

namics are neglected. We use a Cartesian coordinate system ( ̂  x , ̂  z ) 

with ˆ x and ˆ z orientated parallel and normal to the substrate, re- 

spectively and with origin at the centreline of the droplet, such 

that the interface is given by ˆ z = ̂

 h ( ̂  x , ̂  t ) , as shown in Fig. 1 . The 

velocity is given by ˆ u = ( ̂  u , ˆ w ) , where ˆ u and ˆ w are the components 

in the ˆ x , ̂  z directions, respectively; the hat decoration designates di- 

mensional quantities. 

We neglect inertial and gravitational forces such that the gov- 

erning equations are given by 

ˆ u ˆ x + 

ˆ w ˆ z = 0 , (1) 

ˆ ∇ ̂

 p = 

ˆ ∇ · ˆ τ , (2) 

where the stress tensor is expressed by ˆ τi j = ˆ μ(λ) ̂  γi j , ˆ p denotes 

the pressure, the rate of strain tensor is given by ˙ ˆ γi j = ∂ j ̂  u i + ∂ i ̂  u j , 

and | ̇ ˆ γ | = 

√ 

˙ ˆ γi j 
˙ ˆ γi j is the second invariant of ˙ ˆ γi j . Crucially, we as- 

sume that the viscosity depends on a dimensionless structure pa- 

rameter λ that describes the evolving structure within the fluid. 

We enforce no-slip and no-penetration conditions at the substrate, 

ˆ u = ˆ w = 0 at ˆ z = 0 and the kinematic and stress boundary condi- 

Fig. 2. Results from the numerical solution of Eqs. (20) and (21) , computed with � = 0 , B = 5 , D b = 10 , and δ = 9 : droplet evolution for t = 1 , 25 , 50 shown in (a)-(c), 

respectively. Panel (d) shows a zoomed in view of the contact line at t = 25 . In this and subsequent figures, the colour reflects the degree of structure build-up, where red 

and blue represent high and low values of λ, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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