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a b s t r a c t 

The discretisation of benchmark viscoelastic flow problems in axisymmetric geometries using the spectral 

element method is considered. The computations are stabilized using the DEVSS-G/DG formulation of 

the governing equations. A decoupled approach is employed in which the conservation equations are 

solved for velocity and pressure and the constitutive equation (Oldroyd-B and Giesekus) are solved for 

the polymeric component of the extra-stress tensor. The method is validated for the start-up of transient 

Poiseuille flow for which an analytical solution exists. A comprehensive set of results is presented for flow 

past a fixed sphere for the Oldroyd B and Giesekus models. Excellent agreement is found with results in 

the literature on the drag experienced by the sphere. Evidence is provided which shows the existence of 

a limiting Weissenberg number due to the inability to resolve the high gradients in axial stress in the 

wake of the sphere through polynomial enrichment. The shear-thinning property of the Giesekus model 

leads to a reduction in drag compared to the Oldroyd B model at equivalent values of the Weissenberg 

number and viscosity ratio. The numerical simulations eventually fail to converge for the Giesekus model 

which suggests that factors other than solely extensional properties are responsible for this behaviour. 

The influence of the Reynolds number and, for the Giesekus model, the mobility parameter on the drag 

coefficient is also investigated and discussed. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

The computational simulation of flows involving viscoelastic 

fluids is a challenging task. The challenges present themselves in 

the choices of both the constitutive model for the fluid, and the 

numerical method used to approximate the solution in the chosen 

geometry. The choice of model must be made carefully, depending 

on the properties of the fluid and the dynamics of the flow which 

one wishes to simulate. The selected numerical method must be 

robust in terms of stability and accuracy. Few analytical solutions 

are available to validate the numerical method so it has become 

standard to use benchmark problems as a means of understanding 

the chosen model and validating the numerical scheme employed. 

One established transient benchmark problem is that of a 

sphere of radius R S falling at constant speed V S inside a cylindrical 

tube [1] . This problem is one of the oldest problems in the study 
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of fluid dynamics. It dates back to the work of Stokes in the mid 

1800s [2] and has received continuing attention in the subsequent 

literature: a thorough history of the benchmark in the classical 

sense can be found in [3] . It is common to consider the problem 

in the frame of reference of the sphere and the walls, in the 

framework of the sphere, move upwards with uniform speed V S 

and therefore in the opposite direction to the gravitational force. 

In the context of viscoelastic flows, despite the simplistic 

nature of the geometry, this benchmark problem continues to 

present a challenging test for numerical schemes. The complex 

combination of shear and extensional flow regions and increas- 

ingly thin boundary layers has made consistent experimental and 

numerical results difficult to obtain [4] . The benchmark problem 

is also of practical interest in the context of flow around obstacles, 

for example in sedimentation, the settling of suspensions, rheom- 

etry and in industrial settings where particles are present (such as 

mineral and chemical processing or combustion engines). 

It has become common that comparisons for this benchmark 

are made for the particular configuration in which the ratio of 

tube-to-sphere radius is 2 : 1 using the drag force, D computed 

on the surface of the sphere when the flow has reached a steady 

state. It is typical to make comparisons using the value of the 
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drag factor 

D 

∗ = 

D 

6 πη0 R S V S 

(1) 

normalised using the drag experienced by the sphere in an un- 

bounded expanse of Newtonian fluid with viscosity η0 . However, 

it has generally been agreed that, while useful, the drag factor 

does not provide enough insight into the global accuracy of the 

solution found by a numerical method [4,5] , particularly as certain 

components of the stress do not feature in the calculation. It is 

therefore wise to provide further insight into the quality of the 

solution obtained using quantities such as the velocity and stress. 

There are numerical results available for many models in 

the literature, with the upper-convected Maxwell (UCM) model 

featuring heavily in the literature (for example, Rasmussen and 

Hassager [6] , Crochet and Legat [7] , Baaijens et al. [8] ). Other 

constitutive models considered include Oldroyd B, FENE-type, PTT 

and Giesekus [4] . The present work is focused on the Oldroyd B 

and Giesekus models. 

Among the studies published on this benchmark using the 

Oldroyd B model (for example, see Lunsmann et al. [9] , Bodart 

and Crochet [10] , Tamaddon-Jahromi et al. [11] ), only a few have 

used high-order methods (such as spectral or hp -finite element 

methods with high p ), with most methods relying instead on very 

fine meshes (resulting in relatively high numbers of degrees of 

freedom) in order to show mesh convergence. Examples of higher- 

order methods applied to the problem are the spectral p -adaptive 

strategy of Chauvière and Owens [5] and the hp -adaptive finite 

element method of Fan [12] who together find agreement in the 

limiting Weissenberg number for this model. As with the UCM 

model there is a set of results which allows one to compile com- 

prehensive tables of drag factors for comparison by other authors. 

In the case of the Giesekus model, there have been many 

studies involving spheres, particularly in the investigation of 

experimentally observed phenomena (for example, Baaijens et al. 

[8] , Yang and Khomami [13] , Harlen [14] ). However, there exist 

no definitive benchmark results available in the literature for the 

Giesekus model, at least in the sense that they are available for 

UCM and Oldroyd B models. 

The aim of this paper is to apply a high-resolution spectral el- 

ement method to the problem of benchmark of uniform flow past 

a fixed sphere for the Oldroyd B and Giesekus constitutive models, 

with model parameters commonly used by other authors. Our 

spectral element method is applied to a DEVSS-G/DG formulation 

of the problem to provide stabilisation. We shall present results 

which are convergent with respect to the spectral polynomial 

order, p , using a minimal number of elements. These results 

will add to those available in the literature for the Oldroyd B 

model and provide a reference for the Giesekus model, where few 

comprehensive results for this benchmark are available. A similar 

method, with a different implementation, has been successfully 

applied to the benchmark of flow past a cylinder [15] for these 

constitutive models and this paper will extend the available results 

with these techniques to the sphere benchmark problem. 

This paper is arranged as follows. In Section 2 we describe the 

formulation of the governing equations including the DEVSS-G sta- 

bilisation and an alternative treatment of the continuity equation 

and also provide a brief discussion of the rheological behaviour 

of the constitutive models considered. In Section 3 we state the 

formulation of the sphere benchmark problem and how bound- 

ary conditions will be applied. Section 4 details the numerical 

methods applied to the temporal and spatial discretisations of the 

governing equations and how this is handled computationally. In 

Section 5 we present verification of our numerical scheme using 

the analytical solution for transient start-up of Poiseuille flow 

of an Oldroyd B fluid. This is followed by results for the sphere 

benchmark for the Oldroyd B and Giesekus models. Finally, in 

Section 6 we provide some concluding remarks. 

2. Governing equations 

Consider the Navier-Stokes equations in dimensionless form 

Re 
D u 

Dt 
= −∇ p + β∇ 

2 u + ∇ · τ + f , (2) 

∇ · u = −μ

∫ 
�

pd�, (3) 

where the field variables are velocity, u , pressure, p , and elastic 

stress, τ , and μ > 0 is a constant. The dimensionless groups are 

the Reynolds number, Re , and the viscosity ratio, β , which is the 

ratio of solvent to total viscosity. 

The alternative statement of the continuity Eq. (3) , proposed by 

Gwynllyw and Phillips [16] is a means of removing the indetermi- 

nacy in the pressure. It also ensures that when the weak statement 

of the problem is discretized, the pressure approximation is con- 

sistent with the choice of solution space, which requires that 

pressure possesses vanishing mean. There are also benefits to be 

gained in terms of the conditioning of the discrete problem albeit 

at the expense of a loss of sparsity in the global discrete system. 

The system is closed by a constitutive law relating the elastic 

stress to the rate-of-deformation tensor, d = 

1 
2 

(∇u + ∇u 

T 
)
. We 

consider the Giesekus [17] constitutive model for a viscoelastic 

fluid 

τ + W e 

(
� 

τ + 

α

( 1 − β) 
τ2 

)
= 2 ( 1 − β) d (4) 

where the dimensionless group We is the Weissenberg number 

and α > 0 is the mobility parameter. We note that the Oldroyd 

B model [18] is a special case of (4) with α = 0 . We define the 

upper-convected derivative of a general tensor field, G , by 

� 

G = 

∂G 

∂t 
+ u · ∇G − G · ∇u − ( ∇u ) 

T · G . (5) 

2.1. Model properties 

The rheological properties of the constitutive models consid- 

ered play an important role in terms of the type of behaviour 

that may be investigated using them. Two simple flows which 

provide insight into the model behaviour are uniaxial extension 

and simple shear, both of which are important mechanisms in 

flows involving spheres, with shear occurring near the surface of 

the sphere and extension occurring in the wake. 

The Oldroyd model predicts an infinite extensional viscosity at 

a finite shear-rate (namely at ˙ ε = 

1 
2 We ). This is an undesirable and 

unphysical property particularly when modelling flows involving 

extension. The Giesekus model does not suffer from this problem 

and predicts finite values at all extension rates with a limiting 

value [19] of 3 β + 2 ( 
1 −β) 
α for large extension rates. The Oldroyd 

B model predicts a constant shear viscosity whereas the Giesekus 

model predicts shear-thinning, with the rate of thinning with 

shear-rate increasing with the mobility parameter. The limiting 

behaviour of the Giesekus model is independent of the mobility 

parameter and tends to the solvent viscosity, i.e. β , for large 

shear-rates. The Oldroyd B model predicts a quadratic relationship 

between the first normal stress difference and shear-rate and 

a zero second normal stress difference. At low shear-rates the 

Giesekus model predicts a quadratic relationship between the first 

normal stress difference and shear-rate. However, this becomes 

linear at large shear-rates. The Giesekus model predicts a non-zero 

second normal stress difference, which tends to the value − ( 1 −β) 
We 

with increasing shear-rate. 
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