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a b s t r a c t 

Herschel–Bulkley materials can be set in motion when a sufficiently high shear stress or body force is 

applied to them. We investigate the behaviour of a layer of Herschel–Bulkley fluid when it is suddenly 

tilted and subject to gravitational forces. The material’s dynamic response depends on the details of its 

constitutive equation. When its rheological behaviour is viscoelastoplastic with no thixotropic behaviour, 

the material is set in motion instantaneously along its entire base. When its rheological behaviour in- 

volves two yield stresses (static and dynamic yield stresses), the material must be destabilised before 

it starts to flow. This problem is thus similar to a Stefan problem, with an interface that separates the 

sheared and unsheared regions and moves from top to bottom. We estimate the time needed to set the 

layer in motion in both cases. We also compare the solution to the local balance equations with the so- 

lution to the depth-averaged mass and momentum equations and show that the latter does not provide 

consistent solutions for this flow geometry. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Viscoplastic fluid theory has long been used to approximate the 

complex rheological behaviour of natural materials such as snow 

and mud, particularly their transition between solid- and fluid-like 

states [1] . The theory’s strength lies in its capacity to describe flow 

initiation and cessation using a single constitutive equation. Nat- 

ural materials can also entrain the bed on which they flow and, 

in this case, it is tempting to see basal entrainment as a form of 

yielding induced by the passage of the flow [2–4] . 

Various processes are at work when bed materials are set in 

motion. Among these, two are expected to play a major part: the 

increase in the normal and shear stresses applied to the bed sur- 

face, and the decrease in the shear strength relative to gravitational 

forces. The first process is certainly the easiest to investigate exper- 

imentally and theoretically. The Stokes problem provides a theoret- 

ical perspective: fluid is set in motion by applying a shear stress 

to its boundary or by moving that boundary at a constant veloc- 

ity [5,6] . The second process can be studied by suddenly apply- 

ing a body force to the fluid initially at rest. For convenience, this 

paper refers to this problem as Stokes’ third problem. For Newto- 

nian fluids, there exists a similarity solution to this problem, which 

shows that the fluid is instantaneously set in motion and virtu- 

ally all of the fluid layer is entrained even though the effects far 
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from the boundary are exponentially small [6] . Herschel–Bulkley 

materials display a more complex dynamic response to a sudden 

change in the stress state than do Newtonian fluids. This is be- 

cause of their ability to remain static when the stress state lies be- 

low a certain threshold, although they yield when the stress state 

moves above it. This paper investigates Stokes’ third problem for 

Herschel–Bulkley fluids. 

The key issue in Stokes’ first and third problems is the exis- 

tence of an interface separating the yielded and unyielded flows. 

If this interface exists, then one should be able to determine its 

propagation velocity and, thereby, the entrainment rate (at least 

in ideal cases, such as Stokes’ problems). For Stokes’ first problem 

and classic Herschel–Bulkley materials, there is no interface and 

the material is set in motion instantaneously over its whole depth 

[7,8] . For Stokes’ third problem and Herschel–Bulkley materials ex- 

hibiting thixotropy, recent studies have posited the existence of in- 

terfaces moving at constant velocity [2,3] , but the formal proof is 

lacking. 

The problem of determining entrainment rates has also been 

addressed within the framework of depth-averaged equations (see 

[9] for a review). As the mass and momentum balance equations 

are averaged, the interface between sheared and unsheared flows 

is systematically treated as a shock wave (its propagation veloc- 

ity must satisfy the Rankine–Hugoniot equation regardless of the 

constitutive equation, see Section 2.1 ). Although depth-averaging 

leads to governing equations that are simpler to solve, they are 

not closed. The governing equations must be supplemented by clo- 

sure equations that specify how local variables (such as the bottom 
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Fig. 1. Setting in motion a volume of fluid suddenly tilted at an angle θ . 

shear stress and the entrainment rate) are related to bulk quanti- 

ties (such as the depth-averaged velocity and flow depth). To date, 

most closure equations for non-Newtonian fluids have been based 

on empirical considerations and thus lack consensus [9] . 

This paper’s objective is to explore the possibility of fluid-solid 

interfaces for Stokes’s third problem and Herschel–Bulkley fluids. 

It is the continuation of previous studies devoted to Stokes’ first 

[7,8] and second [10] problems. We begin by setting out what 

we refer to as Stokes’ third problem ( Section 2 ). We focus on 

Herschel–Bulkley fluids and outline the current state of the art in 

modelling Herschel–Bulkley fluids. The paper strays from the clas- 

sic form of the Herschel–Bulkley constitutive equation in order to 

take advantage of recent developments in the rheometrical inves- 

tigation of viscoplastic materials. Indeed, the classic form assumes 

that the material behaves like a rigid body when the stress state 

is below a given threshold, whereas in basal entrainment prob- 

lems we expect the material’s behaviour in its solid state to af- 

fect the entrainment dynamics. Our literature review led us to 

consider two types of Herschel–Bulkley fluids: simple Herschel–

Bulkley fluids, whose rheological behaviour is well described by a 

one-to-one constitutive equation, and non-simple Herschel–Bulkley 

fluids, whose rheological behaviour exhibits shear-history depen- 

dence. We demonstrate that the details of the constitutive equation 

have a great deal of influence on the solution to Stokes’ third prob- 

lem. In Section 3 , which is devoted to simple Herschel–Bulkley flu- 

ids, we show that the material is set in motion instantaneously. By 

contrast, non-simple Herschel–Bulkley materials do not start mov- 

ing spontaneously; they must first be destabilised. A front subse- 

quently propagates through the static layer and sets it in motion 

( Section 4 ). For non-simple Herschel–Bulkley materials, we also 

show that in the absence of slip, the depth-averaged equations do 

not require a closure equation for the entrainment rate, but the 

solution to these equations is physically inconsistent. 

2. Stokes’ third problem 

The literature refers to two Stokes problems. Stokes’ first prob- 

lem refers to the impulsive motion of a semi-infinite volume of 

Newtonian fluid sheared by an infinite solid boundary. Stokes’ sec- 

ond problem concerns the cyclical motion of this volume sheared 

by an oscillatory boundary [6] . These two problems have also been 

investigated for viscoplastic materials [7,8,10] . 

A related problem concerns the setting in motion of a layer of 

fluid of depth H , initially at rest and suddenly tilted at an angle 

θ to the horizontal (see Fig. 1 ). Contrary to the two Stokes prob- 

lems above, we consider a volume that is not bounded by an in- 

finite plate, but by a free surface. As this problem bears some re- 

semblance to the original Stokes problem, this paper refers to it 

as Stokes’ third problem (mainly for convenience). Previously, it 

was partially studied for Herschel–Bulkley flows [2,3] and Drucker–

Prager fluid [4] . 

2.1. Governing equations 

We consider an incompressible Herschel–Bulkley fluid with 

density ϱ; its constitutive equation is discussed in Section 2.2 . The 

fluid is initially at rest. There is a free surface located at z = 0 , with 

the z -axis normal to the free surface and pointing downward. We 

also introduce the z ′ -axis, normal to the free surface, but pointing 

upward. The x -axis is parallel to the free surface. At time t = 0 , 

the volume is instantaneously tilted at an angle θ to the horizon- 

tal. We assume that a simple shear flow takes place under the ef- 

fects of gravitational forces and that the flow is invariant under any 

translation in the x -direction. The initial velocity is 

u (z, 0) = 0 . (1) 

At the free surface z = 0 , in the absence of traction, the shear 

stress τ is zero 

τ = 0 at z = 0 . (2) 

A key issue in Stokes’ third problem is the existence of a propa- 

gation front z = s (t) (i.e. a moving interface between the sheared 

and stationary layers) and the boundary conditions at this front. 

For Stokes’ first problem, shear-thinning viscoplastic fluids behave 

like Newtonian fluids: the momentum balance equation reduces to 

a linear parabolic equation, and the front propagates downward in- 

stantaneously [7,8] . The question arises as to whether this is also 

the case for Stokes’ third problem. 

Let us admit that the interface moves at a finite velocity v f . 

The dynamic boundary condition at this interface is given by a 

Rankine–Hugoniot equation 

� −� u ( u · n − v f ) + σ · n � = 0 , (3) 

where � f � denotes f ’s jump across the interface [11,12] . In the ab- 

sence of slip 

u = 0 at z = s (t) , (4) 

this equation implies the continuity of the stresses across the in- 

terface 

� τ � = 0 and � σzz � = 0 , (5) 

where σ zz is the normal stress in the z -direction. If the mate- 

rial slips along the bed-flow interface at a velocity u s , then the 

Rankine–Hugoniot equation implies that the shear stress exhibits a 

jump across the interface, while the normal stress is continuous 

� τ � = −�u s v f and � σzz � = 0 . 

The first relationship has often been used in the form v f = 

−� τ � / (�u s ) , which fixes the entrainment rate when the other vari- 

ables are prescribed [3,13,14] . Internal slip in viscoplastic materials 

is only partially understood. It may be a consequence of shear lo- 

calisation or shear banding in thixotropic viscoplastic fluids [15,16] . 

In the rest of the paper, we assume that the no-slip condition ap- 

plies at the interface, and so the boundary condition is given by 

equation (5) . 

For this problem, the governing equation is derived from the 

momentum balance equation in the x -direction 

� 

∂u 

∂t 
= �g sin θ − ∂τ

∂z 
. (6) 

To solve the initial boundary value problem (2) –(6) , we need to 

specify the constitutive equation. 



Download English Version:

https://daneshyari.com/en/article/4995574

Download Persian Version:

https://daneshyari.com/article/4995574

Daneshyari.com

https://daneshyari.com/en/article/4995574
https://daneshyari.com/article/4995574
https://daneshyari.com

