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a b s t r a c t 

Natural gravity-driven flows can increase in volume by eroding the bed on which they descend. This pro- 

cess is called basal entrainment and is thought to play a key role in the bulk dynamics of geophysical 

flows. Although its study is difficult using field measurements, basal entrainment is more easily amenable 

to analysis using laboratory experiments. We studied basal entrainment by conducting dam-break exper- 

iments releasing a fixed amount of viscoplastic fluid (a Herschel–Bulkley fluid) on a sloping, erodible bed 

of fixed depth. Entrainment was observed continuously, far from the sidewalls, using cameras. Bed ma- 

terial was quickly entrained, which led to flow advancement. Although the slope inclination had clear 

effects on the entrainment mechanisms, as shown by the internal measurements, this did not translate 

into faster front progression. Instead, the depth and length of the entrainable material were the most im- 

portant controlling parameters of front velocity, as the surge scoured out the entrainable layer, pushing 

the entrainable material downstream and following the rigid bed’s geometry. Bulk measurements (front 

position and flow depth profile) were also compared with predictions from lubrication theory. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Gravity driven flows, such as snow avalanches and debris flows, 

pose a threat to human activities and settlements in mountain 

areas. The economic importance of these activities (e.g. mining, 

forestry, electricity production, tourism, transportation) has en- 

couraged research into methods for calculating the main features 

of these flows (e.g. run-out distance, flow depth, impact force) [1] . 

In the 1960s, the idea emerged that an analogy could be made 

between avalanches and water flows, and since then the Saint–

Venant equations have been increasingly used to describe the mo- 

tion of “snow floods” [2–4] , rock avalanches [5] , debris flows [6] , 

turbidity currents [7] , and submarine avalanches [8] . 

Although the analogy with water waves has been pivotal to 

laying out the mass and momentum balance equations, there are 

crucial differences between water and natural materials involving 

mixtures of fluids and solids. A large amount of research has been 

done to determine the effects of bulk composition on rheological 

behaviour, flow resistance and self-organisation during flow. An- 

other key difference between water and natural materials is re- 

lated to mass exchanges between the flow and the bed: gravity 

driven flows can grow in size by mobilising loose material lying 

in their paths, or they can lose mass as a result of various pro- 

cesses (e.g. levee formation, debulking due to solid particle sedi- 
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mentation) [9–15] . This raised the question of whether basal en- 

trainment affects bulk dynamics. For instance, for powder-snow 

avalanches, Kulikovskiy and Svehnikova [16] developed a simple 

model which took into account the incorporation of air and snow 

and showed that basal entrainment plays an essential part in the 

growth of high-velocity avalanches. Without snow entrainment, air 

entrainment causes a dilution of the snow cloud, and thus a de- 

crease in buoyancy forces [17] . Generalising the depth-averaged 

Saint–Venant equations to eroding flows mobilising natural mate- 

rials has proved challenging to the different groups working on the 

issue. Recently, Iverson and Ouyang [18] reviewed the various at- 

tempts to model mass exchanges between flows and beds within 

the framework of the Saint–Venant equations. They showed that 

many existing models violated mass and momentum conservation 

laws, mostly because the boundary conditions at the bed-flow in- 

terface were incorrect. One underlying issue raised by their review 

was the absence of closure equations for the entrainment and de- 

position rates. 

To shed light on basal entrainment’s effects on the behaviour of 

gravity-driven flows, we investigate a problem that retains the es- 

sential features of natural scenarios, while being sufficiently simple 

to be manageable semi-analytically. We consider the dam-break 

problem for a viscoplastic fluid, i.e. the flow of a fixed volume of 

fluid suddenly released down a slope from a reservoir. The sloping 

bed is a solid substrate, but at a certain distance from the reser- 

voir, the flow enters into contact with an erodible stationary layer 

composed of the same fluid and starts entraining it. We sought to 
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determine how basal entrainment affected the front position and 

flow-depth profile over time. 

The viscoplastic dam-break problem is a typical example of 

time-dependent flow, in which the flow passes through different 

phases from release to run-out. This problem has been studied 

within the frameworks of the Saint–Venant equations [19–22] and 

lubrication theory [23–30] . Based on the assumptions that the flow 

is shallow (i.e. the aspect ratio ε = L/H, where L and H denote 

scales of length and depth) and slow (i.e. the Reynolds flow num- 

ber is low), lubrication theory approximates the local momentum- 

balance equation using an asymptotic expansion in ε. The decisive 

advantage of lubrication theory over the Saint–Venant equations is 

that the velocity and stress fields are calculated with no recourse 

to closure equations as long as inertia plays a negligible role. 

In the present paper, we focus on a nonlinear class of viscoplas- 

tic materials called Herschel–Bulkley fluids. Viscoplastic materi- 

als behave like fluids when they are sufficiently stressed, but like 

solids when the stress state is below a given threshold (called the 

yield stress) [31–34] . As natural materials exhibit solid- and fluid- 

like properties, the use of viscoplastic models has been proposed 

in order to describe the rheological behaviour of snow [35] , mud 

[20] , debris mixtures [36–38] , lava [39] and submarine mud [8] . 

Actual rheological behaviour exhibits complex properties—such as 

two-phase effects (pore pressure diffusion), dilatancy, particle mi- 

gration and segregation [6,40–42] —which are not accounted for by 

the simple constitutive equations of single-phase continua such as 

the Herschel–Bulkley equation. Yet in spite of these limitations, the 

Herschel–Bulkley equation provides a useful approximation of var- 

ious natural viscoplastic flows [20,22,24,27,28,43–47] . As viscoplas- 

tic models deal with the solid-liquid transition, they also seem rel- 

evant for describing basal entrainment: part of the bed may yield 

under the effects of the normal and shear stresses exerted by the 

flow, and then be entrained in that flow. This is, for instance, what 

is thought to happen in snow avalanches [48–50] . 

In this paper, we tackle the issue of basal entrainment using lu- 

brication theory. We begin with a theoretical perspective of basal 

entrainment in shallow flows within the framework of lubrication 

theory (see Section 2 ). In Section 3 , we describe the experimen- 

tal procedure used for measuring the flow variables and observ- 

ing what happens inside eroding flows. Section 4 presents our 

experimental results and compares them with theoretical predic- 

tions from lubrication theory. Section 5 concludes the paper. Three 

videos are available to accompany this paper (the acknowledge- 

ments section provides the link to the data repository). 

2. Dam-break wave eroding a stationary layer 

This section examines the effects of basal entrainment on the 

front motion of a viscoplastic avalanche. Let us consider that at 

time t = 0 , an avalanche made up of a Herschel–Bulkley fluid is 

released from a reservoir. Initially the fluid material flows over a 

sloping solid boundary. The bottom inclination is denoted by θ . At 

time t = t 0 , the material encounters a stationary layer made up of 

the same fluid and occupying a step of length � bed (see Fig. 1 ). The 

viscoplastic flow spreads across this stationary layer and entrains 

part of it. The front position is denoted by x f ( t ), the flow depth 

by h ( x, t ) and the velocity field by u = (u, w ) . We use a Cartesian 

frame with the x -axis pointing downward and the z -axis normal to 

the slope. 

To solve this problem, we use lubrication theory. Within the 

framework of this theory, the momentum balance equations are 

simplified by neglecting inertia terms and the streamwise gradient 

of the normal stress. This makes it possible to deduce the pressure 

and shear stress distributions to the leading order. Making use of 

the constitutive equation then leads to the velocity profile and, fi- 

nally, the depth-averaged mass conservation provides the evolution 

equation for the flow depth h ( x, t ). There is a large body of work 

applying this theory to viscoplastic flows [23,26,27,30,51] ; it is suc- 

cinctly summarised in the next section. 

2.1. Solution for rigid bottoms 

In the limit of low Reynolds number and small aspect ratio 

numbers, motion is dictated by the balance between the stream- 

wise gradient of the pressure ∂ x p , gravitational forces and the 

cross-stream gradient of the shear stress ∂ y τ . To the first order, the 

pressure p adopts a hydrostatic distribution, while the shear stress 

τ follows a linear distribution whose coefficient is controlled by 

the bed slope and free surface gradient: 

p = �g(h − z) cos θ and τ = �g sin θ (h − z) 

(
1 − cos θ

∂h 

∂x 

)
. (1) 

These expressions hold regardless of the constitutive equation. 

We now consider the constitutive equation for simple Herschel–

Bulkley materials {
˙ γ = 0 if τ < τc , 

τ = τc + κ| ̇ γ | n if τ ≥ τc , 
(2) 

where τ c denotes the yield stress, ˙ γ = d u/ d z the shear rate, n the 

shear-thinning index (as in most cases n ≤ 1) and κ the consis- 

tency. These materials flow when the basal-shear stress exceeds 

the yield stress τ c . When this condition is satisfied, there exists a 

surface z = Y (x, t) where the shear stress equals the yield stress: 

Y = h − τc 

�g sin θ
∣∣1 − cot θ ∂h 

∂x 

∣∣ . (3) 

Below this surface, the fluid is sheared and above this surface it 

moves like a plug. Equations (2) and (1) lead to the following ex- 

pression for the streamwise velocity component u ( x, z, t ) 

u (x, z, t) = 

n 

n + 1 

A 

(
1 − S 

∂h 

∂x 

)1 /n (
Y 1+1 /n − ( Y − z ) 

1+1 /n 
)

for 

0 ≤ z ≤ Y, (4) 
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Fig. 1. Configuration of the flow. A viscoplastic avalanche is released from a reservoir. It flows over a sloping rigid bed until it gets in contact with a stationary layer made 

of the same fluid. 



Download English Version:

https://daneshyari.com/en/article/4995578

Download Persian Version:

https://daneshyari.com/article/4995578

Daneshyari.com

https://daneshyari.com/en/article/4995578
https://daneshyari.com/article/4995578
https://daneshyari.com

