
Journal of Non-Newtonian Fluid Mechanics 247 (2017) 146–164 

Contents lists available at ScienceDirect 

Journal of Non-Newtonian Fluid Mechanics 

journal homepage: www.elsevier.com/locate/jnnfm 

Simulation of velocity and shear stress distributions in granular 

column collapses by a mesh-free method 

Tibing Xu 

a , Yee-Chung Jin 

a , ∗, Yih-Chin Tai b , Chun-Hua Lu 

b 

a Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada 
b Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan 

a r t i c l e i n f o 

Article history: 

Received 1 October 2016 

Revised 10 April 2017 

Accepted 18 July 2017 

Available online 19 July 2017 

Keywords: 

Rheology model 

Moving particle semi-implicit method 

Mesh free 

Dense regime 

Velocity distribution 

a b s t r a c t 

To describe granular flows in the dense regime, the μ( I ) rheology model was proposed. It has been proven 

to be effective in reproducing flow dynamics in the dense regime caused by dry granular materials. For 

continuum modeling, the mesh-free method can easily handle flows with interface such as free surface, 

which commonly exists in most granular flows. In this study, the μ( I ) rheology model is coupled with 

a mesh-free method, Moving Particle Semi-implicit method (MPS). The coupled model is used to ana- 

lyze velocity and shear stress distributions in granular column collapses. To validate the model, velocity 

measurements were conducted on two aspect ratios a = 1.25 and 5.0. The coupled model is verified by 

the measured velocity profiles. Both horizontal and vertical velocity distributions are examined in the 

validation. A linear relationship on the velocity distribution is observed in the flowing region in the col- 

lapses both experimentally and numerically. Another larger aspect ratio a = 7.0 were then simulated and 

a similar linear velocity distribution was obtained. On the basis of the velocity analysis, the tangential 

shear stress was analyzed and discussed in the three collapses. It showed that the distribution of the 

shear stress is symmetrical with the opposite direction. In the core quasi-static region, the shear stress 

was larger than that in the flowing region. In the free fall of the upper portion for the large aspect ratios 

such as a = 7.0, there was very small shear stress. In the center of the column in the collapses, the shear 

stress almost remains zero with some fluctuations. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Granular materials are very common in diverse fields such as 

geotechnical engineering, agriculture, powder technology, and the 

pharmaceutical industry. They are able to behave differently un- 

der different circumstances [1–3] . Resembling like a liquid, they 

flow through channels or pipes, or run as surface waves, etc. In 

other situations, they can behave more like a solid. In regards to 

dry and cohesion-less granular materials, behaviors of them are 

also complicated [4–9,38,40,41] . The flows caused by these mate- 

rials are usually divided into three regimes based on the velocity 

[10–12] : the quasi-static regime, where the grain inertia is negli- 

gible and flow is often described by soil plasticity models [13] ; an 

intermediate dense regime; and the gaseous regime if the mate- 

rial is strongly agitated. In the gaseous regime, the grains are far 

apart with each other and the interaction is dominated by binary 

collisions. To account for this behavior, a kinetic theory has been 

developed [14] . The dense regime is a regime where grain iner- 
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tia is significant and there is a contact network among grains. One 

method to predict the granular flow in the dense regime is to use a 

continuum description which requires a constitutive equation. Ad- 

vances have been made in developing a constitutive law for the 

dry granular flows as the μ( I ) rheology model [10–12] . 

The application of this rheology model in the continuum ap- 

proach has been proven to be able to reflect many characteristics 

in granular flows [15–19] . The μ( I ) rheology model is validated in 

the finite volume method with the use of volume-of-fluid (VOF) 

technique for tracking free surface by Lagrée et al. [16] . The flow 

dynamics in granular column collapses is successfully obtained in 

their research. With the μ( I ) rheology model, a three-dimensional 

simulation study has been conducted by using the finite element 

method [19] . A regularization technique for the rheology model is 

shown to be effective in reproducing flow dynamics. In the sim- 

ulations by Ionescu et al. [15] , the rheology model in the finite 

element method is examined with respect to rheological parame- 

ters and boundary conditions. It is shown that the rheology model 

in the numerical method is good at quantitatively reflecting ex- 

perimental results in the granular column collapse over inclined 

planes. The μ( I ) rheology model is also implemented in mesh- 
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free methods such as Moving Particle Semi-implicit method (MPS) 

[18] and Smoothed Particle Hydrodynamic (SPH) [17,51] . It is un- 

necessary to employ extra techniques such as VOF in these meth- 

ods in handling free surface. The flow characteristics such as free 

surface and wave front are reported to be captured in the mesh- 

free methods [17,18] . Besides, there are many studies by using the 

μ( I ) rheology model in the depth-integrated equations [20–22] . Al- 

though many flow dynamics have been reproduced, velocity and 

shear stress calculated by using the μ( I ) rheology model in the nu- 

merical methods need to be addressed in granular flows. 

MPS as a Lagrangian method is a good numerical tool in sim- 

ulating free-surface flows. It was first proposed by Koshizuka and 

Oka [23] and then widely used in various engineering areas such 

as coastal engineering [24–26] , nuclear engineering [27] , hydraulic 

engineering [29–31] , biomechanics [28] , etc. To simulate dry gran- 

ular flows without cohesion, MPS is coupled with the μ( I ) rheology 

model. The coupled model is assessed on calculating velocity and 

shear stress in an unsteady configuration, namely, granular column 

collapse. The flow is activated by instantaneously releasing a col- 

umn of granular medium such as glass beads and then a highly un- 

steady flow with varying free surface develops. Many experiments 

have been conducted to study flow characteristics in these column 

collapses [32–37] . It is found that an initial aspect ratio plays an 

important role on the spreading of the column (e.g. [33,36] ). The 

free-surface profiles and wave fronts in the column collapses are 

reported to be successfully captured by the coupled model [18] . In 

this study, the velocity distribution in the collapses is analyzed. To 

achieve this, experiments were conducted to measure the veloc- 

ity in the flows. Velocity from different initial aspect ratios, which 

can trigger different flow characteristics, are measured. The cou- 

pled model is validated by the experimental results and the veloc- 

ity distribution for different aspect ratios is analyzed both numeri- 

cally and experimentally. Based on the velocity analysis, the ability 

of the coupled model in analyzing shear stress is examined and 

discussed. 

The paper is organized as follows: the μ( I ) rheology model 

and the governing equations are in Section 2 ; Section 3 illustrates 

methodology used in the current research, including the numeri- 

cal method and experimental setup; Sections 4 –6 are result dis- 

cussions of flow dynamics, velocity distribution, and shear stress 

in the collapses, respectively. 

2. Theoretical framework 

2.1. The inertial number I 

In the intermediate regime, the granular material is in close 

contact with one another, yielding a contact network among them. 

Grains interact both by enduring contact and collisions; thereby in- 

ertia plays an important role in their behaviors. Due to complex 

correlations of motion and force, theoretical description of such 

flows is very challenging beyond the kinetic theory in the gaseous 

regime [14] and also beyond the soil plasticity models in the quasi- 

static regime [13] . Advances to understand the flows in the dense 

regime have been made in the last decades through experimental 

and numerical research in various configurations. A detailed review 

can be found in the literature [10] . 

To quantify the relative importance between inertial and con- 

fining stresses, a dimensionless number, inertial number I , is intro- 

duced [10] : 

I = | γ | d s 
√ 

ρs /p . (1) 

where d s is the grain size in diameter, ρs is the density of granular 

material, and p is the pressure. In Eq. (1) , | γ | represents the second 

invariant of the strain rate tensor, 

| γ | = 

√ 

0 . 5 γαβγαβ with γαβ = 

∂ u α

∂ x β
+ 

∂ u β

∂ u α
. (2) 

where γ αβ is the strain rate tensor, and u α , u β are velocity com- 

ponents in the α- and β- direction, respectively. 

2.2. The μ( I ) rheology model 

The pioneering work on the granular flows was made by Bag- 

nold [39] . However, to predict granular flows in the dense regime, 

the simple rheology models such as Newtonian, Bingham, and Bag- 

nold were unable to simulate good results in granular column col- 

lapses [16] . There are also some models developed from different 

theoretical backgrounds, but they can reproduce limited behaviors 

in granular flows [54–56] . The Drucker–Prager and Mohr–Coulomb 

models are able to calculate the plastic deformation caused by 

granular materials [57,58] . As a more recently developed model, 

the μ( I ) rheology model is successful in reproducing dynamics in 

the dense regime of dry granular flows in different configurations. 

The μ( I ) model was developed from quantifying observations in a 

series of experiments and numerical simulations (e.g. [10,11] ). The 

effectiveness of the μ( I ) rheology model can range in a fairly wide 

class of granular flows in the dense regime [11,42,52] . The model 

and its extensions have been applied into modeling dry granular 

flows in different numerical method [6,15–18,52,59] , successfully 

reproducing flow dynamics such as run-off, free surface, and flow 

patterns in the granular column collapses. Therefore, the μ( I ) rhe- 

ology model is selected in this study to investigate velocity and 

stress in granular column collapses. 

When the granular flow develops, the local tangential shear 

stress τ is proposed to be analogous to the classical Mohr-Coulomb 

friction law in practice, i.e. whose value is proportional to the local 

normal pressure p , 

τ = μp. (3) 

where μ is the friction coefficient, which is locally dependent on 

the inertial number [11] : 

μ( I ) = μs + 

μ2 − μs 

I/ I 0 + 1 

. (4) 

Eq. (4) includes two material-dependent coefficients μs and μ2 , 

where μs denotes the threshold value for the quasi-static regime 

( I → 0) and μ( I ) converges to a limiting value μ2 for high I ( I >> 1) 

in the strongly sheared regime. For spherical glass beads, μs = tan 

(20.9 °), μ2 = tan (32.76 °), and I 0 = 0.279 are suggested [11] , which 

are used in this study. 

Although grains are in dense contact in the intermediate 

regime, a small variation in the volume fraction φ is still observed, 

where the inertial number may play an important role. With in- 

crease of the inertial number, the volume fraction decreases be- 

cause the grains are agitated and can slightly separate. Letting φmax 

be the maximum volume fraction in the system, the volume frac- 

tion φ is given by [12] and [43] : 

φ = φmax − δφ I. (5) 

where δφ is 0.2 [12] . 

In the case of neglecting the small variation in the volume frac- 

tion and assuming the fluid is incompressible, the internal stress 

tensor ταβ is proposed [11] : 

ταβ = η( | γ | , p ) γαβ, (6) 

η( | γ | , p ) = μ( I ) p/ | γ | . (7) 

where η is the effective viscosity. 
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