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a b s t r a c t 

In the present paper we analyze the dimensionless numbers that concern the flow of viscoplastic ma- 

terials. The Bingham material is used to conduct the main discussion but the ideas are generalized to 

more complex viscoplastic models at the end of the article. Although one can explore the space of solu- 

tions with a set of dimensionless numbers where only one of them takes into account the yield stress, 

like the Bingham number for example, we recommend that the characteristic stress should be defined as 

the extra-stress intensity evaluated at a characteristic (maximum) deformation rate. Such a definition in- 

cludes the yield stress in every dimensionless number that is related to viscous effects like the Reynolds 

number, the viscosity ratio, and the Rayleigh number. This procedure was shown to be more effective 

on collapsing data into master curves and to provide a fairer comparison with the Newtonian case. This 

happens because a more representative viscous effect is taken into account, concentrating the plastic ef- 

fects into a single parameter. The plastic number, the ratio of the yield stress to the maximum stress 

of the domain, is shown to better capture plastic effects than the usual Bingham number. The analysis 

of problems where a characteristic stress, but not a characteristic velocity, is provided, indicates that a 

more representative characteristic velocity should be defined with respect to the driving potential for the 

motion, i.e., the difference between the characteristic and yield stresses. This method is in contrast to the 

majority of the literature, where for Bingham materials, the dimensionless numbers are maintained in the 

same form as the original Newtonian ones, replacing the Newtonian viscosity by the viscous parameter 

of the Bingham model. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Dimensionless analysis is a common practice in Fluid Mechan- 

ics and other areas of research. Dimensionless numbers are able to 

condense information about the physics of the problem, and there- 

fore its usefulness is undisputed. This approach allows a reduction 

in the number of experiments, numerical or not, in order to un- 

derstand the role played by the different parameters. In addition, 

when a specific dimensionless number tends to zero or to infinity, 

generally a certain term (probably associated with a certain phe- 

nomenon) is negligible, which in turn enables the establishment 

of limiting cases. 

The Buckinham- π theorem is an important tool that provides 

the minimum number of dimensionless quantities necessary for 

the complete description of the flow problem, assuming a given 

set of dimensional parameters that are connected to the physics 
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of the problem. Although from a mathematical viewpoint one is 

able to cover the whole space of possible dynamic responses of the 

system of equations, the Buckinham- π procedure does not offer 

a unique set of dimensionless numbers. Therefore, a natural issue 

that arises concerns the comparison of the different possibilities. Is 

there a preferable set of choices, or is any choice that covers the 

space of possibilities equally legitimate or useful? 

Informal discussions of this subject, during the VFTA2015 

congress, 1 have brought out at least three different answers to this 

question. 

(1) There are no conceptual differences between the different 

possible sets. 

(2) Depending on the problem, some sets can be more useful. 

(3) Irrespectively of the problem, some sets are more useful. 

Since there is no consensus on this issue, a discussion 

of the subject seems to be worth making. Analyses on the 

1 Viscoplastic Fluids: From Theory to Application, Oct 25th to 30th, Banff, Canada, 

2015. 
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dimensionless numbers of non-Newtonian fluids in the literature 

are more active on the flow of viscoelastic fluids. It is not the aim 

of the present work to provide a historical treatment on the sub- 

ject, but important discussions on the use of Deborah and Weis- 

senberg numbers can be found in [1–6] and, more recently in 

[7,8] . The reader is referred to those articles for a broad viewpoint 

on this matter. Another contribution to dimensionless numbers in 

non-Newtonian fluid mechanics was made by [9] . 

When dealing with the flow of non-Newtonian fluids, an im- 

portant observation lies on the fact that this class of materials is 

defined by exclusion, i.e., a non-Newtonian effect is, by definition, 

an effect which cannot be Newtonian. In this sense, the Newtonian 

fluid is clearly a reference. The logical consequence is that, when- 

ever possible, it would be interesting to consider the Newtonian 

flow as the limiting case of a non-Newtonian one. In this connec- 

tion, Weissenberg and Deborah numbers have been conceived as 

viscoelastic dimensionless numbers that vanish in the Newtonian 

case. In the same spirit, the Bingham number is a dimensionless 

viscoplastic number that is also zero in the Newtonian case. 

While the importance of defining a dimensionless number that 

accounts for a strictly non-Newtonian effect is recognized and 

highlighted, less attention is devoted to dimensionless numbers 

which also appear in the flow of Newtonian fluids. Quantities 

like the Reynolds number, the viscosity ratio, and the capillary 

number, among others, are based on the competition between 

viscous effects and other phenomena: inertia, viscous effects of a 

second fluid, interfacial tension (to give the corresponding exam- 

ples). Since the viscosity behavior of a non-Newtonian material 

differs, in general, from the Newtonian one, careful consideration 

is needed if one wishes to maintain in the non-Newtonian prob- 

lem the interpretation of these dimensionless numbers conceived 

in a Newtonian paradigm. This principle is consistent with the 

logic behind the maintenance of the Newtonian nomenclature in a 

non-Newtonian problem. 

At this point, it is worth noticing that there are indeed exam- 

ples of rigor with respect to this issue. The Reynolds number ex- 

pression for the flow of a power-law fluid, η = K ˙ γ n −1 , in a tube 

of diameter D with mean velocity V can be found in pioneering 

papers, e.g. [10] , and is given by 

Re = 

8 n 

6 n + 2 

ρV 

2 −n D 

n 

K 

. (1) 

We can notice that Eq. (1) is not straightforward at first glance. 

The rationale that leads to Eq. (1) is based on the following general 

definition. 

Re = 

8 ρU 

2 

τw 

, (2) 

which, combined with the definition for the friction factor, f = 

4 τw 

/ 0 . 5 ρU, 2 leads to a constant product of the friction factor with 

the Reynolds number for laminar flows: f Re = 64 . In fact, any def- 

inition that intends to keep the original meaning of each of these 

quantities must lead to the constancy of the product fRe . This point 

of view was adopted by [11] in the context of a viscoplastic prob- 

lem. In [12] , these definitions for the Reynolds number and friction 

factor were used to find expressions for the localized head loss for 

fittings in pipes for power-law and viscoplastic materials. 

This example illustrates situations where a more careful con- 

struction of the dimensionless numbers that have a Newtonian 

counterpart leads to more useful quantities. The purpose of the 

present paper is to investigate the use of dimensionless numbers 

in studying the flows of viscoplastic materials. 

2. Detachment from the purely viscous behavior 

We will first approach this matter by considering Bingham-like 

materials and then extend this to other viscoplastic constitutive 

equations. The Bingham model can be expressed in two forms: a 

stress form and a viscosity form, respectively given by {
τ = τy + μB ˙ γ if τ ≥ τy 

˙ γ = 0 if τ < τy 
(3) 

and { 

η = 

τy 

˙ γ
+ μB if τ ≥ τy 

˙ γ = 0 if τ < τy 

(4) 

where τ = 

√ 

0 . 5 tr ( τ2 ) is the extra-stress intensity and the extra- 

stress tensor is written as a Generalized Newtonian Fluid, i.e., τ = 

η ˙ γ , where ˙ γ is twice the rate-of-strain tensor. The quantity τ y is 

the yield stress, while ˙ γ = 

√ 

0 . 5 tr ( ̇ γ2 ) is the deformation rate. In- 

terestingly, the expression the viscosity of a Bingham material is am- 

biguous. One can be referring to μB or η. In the present paper we 

will distinguish between the two by referring to η as the viscosity 

of the Bingham material or simply “the viscosity,”2 while μB will 

be referred to as the viscous parameter of the Bingham material. 3 

It is a common practice in viscoplastic problems of Bingham 

materials to consider the characteristic stress of the material as 

τa = μB ˙ γc = μB U/L, where ˙ γc is a characteristic deformation rate, 

generally expressed by a characteristic velocity and a character- 

istic length scale. When using the Hershell–Buckley (HB) model, 

where the term K ˙ γ n replaces μB ˙ γ in Eq. (3) , the usual character- 

istic stress adopted in the literature is K ( U / L ) n . In fact, the Bingham 

number, Bn , appears naturally if one divides Eq. (3) by τ a : {
τ ∗

a = Bn + ˙ γ ∗ if τ ∗
a ≥ Bn 

˙ γ ∗ = 0 if τ ∗
a < Bn 

, (5) 

where τ ∗
a = τ/τa is the dimensionless stress, ˙ γ ∗ = ˙ γ L/U is the di- 

mensionless deformation rate, and 

Bn = 

τy L 

μB U 

(6) 

is the usual Bingham number. 

Here we can connect the issues raised above with the particu- 

lar case of a Bingham material. If we look at a viscoplastic Bing- 

ham problem without any pre-conceived notions we observe that, 

besides τa = μB U/L, there are two other natural candidates for a 

characteristic stress: τb = τy + μB U/L and simply τ y . The natural 

questions that arise at this point are: 1) Why is it usual in the lit- 

erature to use τ a ?; 2) Does it matter which kind of characteristic 

stress is used?; in case the answer to the second question is “yes,”

3) Is τ a the best option? 

Although one can choose the yield stress as the characteristic 

stress when the study is confined to viscoplastic materials, this 

choice has the inconvenient feature of being more difficult to com- 

pare with the Newtonian case, since the dimensionless stresses go 

to infinity in this limit. Hence, we have one alternative which is to 

use τ b as a characteristic stress. In this case, Eq. (3) can be rewrit- 

ten as {
τ ∗

b 
= P l + ( 1 − P l ) ̇ γ ∗ if τ ∗

b 
≥ P l 

˙ γ ∗ = 0 if τ ∗
b 

< P l 
, (7) 

where τ ∗
b 

= τ/τb is a dimensionless stress and the dimensionless 

quantity Pl is called, from now on, the plastic number and is de- 

fined as 

P l = 

τy 

τy + μB U/L 
. (8) 

2 Although this quantity was called “the true viscosity” or the “effective viscosity”

in the literature, to call it simply “the viscosity” seems to be more in accordance 

with the official nomenclature (see [13] ). 
3 Although this quantity is generally referred to as the plastic viscosity , we are 

avoiding this expression here for the reason pointed out by [14] , viz. the fact that 

this viscosity parameter is the viscosity of the material at high shear rates, where 

the role played by the yield stress is negligible. 
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