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a b s t r a c t 

We report the results of computations for two–dimensional dambreaks of viscoplastic fluid, focusing on 

the phenomenology of the collapse, the mode of initial failure, and the final shape of the slump. The 

volume-of-fluid method is used to evolve the surface of the viscoplastic fluid, and its rheology is captured 

by either regularizing the viscosity or using an augmented-Lagrangian scheme. We outline a modification 

to the volume-of-fluid scheme that eliminates resolution problems associated with the no-slip condition 

applied on the underlying surface. We establish that the regularized and augmented-Lagrangian methods 

yield comparable results, except for the stress field at the initiation or termination of motion. The numer- 

ical results are compared with asymptotic theories valid for relatively shallow or vertically slender flow, 

with a series of previously reported experiments, and with predictions based on plasticity theory. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The sudden gravitational collapse of a mass of viscoplastic fluid 

features in a diverse range of problems from geophysics to engi- 

neering. These flows can constitute natural or manmade hazards, 

as in the disasters caused by mud surges and the collapse of mine 

tailing deposits. In an industrial setting, the controlled release of 

a reservoir in a simple dambreak experiment forms the basis of a 

number of practical rheometers, including the slump test for con- 

crete [1,2] and the Bostwick consistometer of food science [3] . The 

slump test features the release of a cylinder of yield-stress fluid. 

The focus of the current article is more aligned with the Bostwick 

consistometer, in which materials such as ketchup are released in 

a rectangular channel, and two–dimensional flow is a convenient 

idealization. In view of the relatively slow nature of the flows in 

many of these problems, we also consider the limit of small iner- 

tia. 

Despite wide–ranging practical application, the theoretical 

modelling of viscoplastic dambreaks remains relatively unexplored. 

Asymptotic theories for shallow, slow flow have received previous 

attention and permit a degree of analytical insight into the prob- 

lem (see [4,5] and references therein). Numerical computations of 

two–dimensional dambreaks have also been conducted to model 

flows that are not necessarily shallow [6] . However, these simula- 
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tions do not provide a detailed survey of the flow dynamics over 

a wide range of physical conditions and have focused mainly on 

determining some of the more qualitative aspects of the end state 

of a slump, such as its final runout and maximum depth. Com- 

plementing both asymptotics and numerical simulation are cruder 

predictions of the final shape based on solid mechanics and initial 

failure criteria derived from plasticity theory [1,7,8] . 

The key feature of a viscoplastic fluid that sets the problem 

apart from a classical viscous dambreak is the yield stress. When 

sufficient, this stress can hold the fluid up against gravity, pre- 

venting any flow whatsoever. If collapse does occur, the yield 

stress brings the fluid to a final rest and can maintain localized 

rigid regions, or “plugs”, during the slump. The evolving plugs and 

their bordering yield surfaces present the main difficulty in theo- 

retical models, particularly in numerical approaches. Augmented- 

Lagrangian schemes that deal with the complications of the yield 

stress directly are often time-consuming to run, whereas regular- 

izations of the constitutive law that avoid true yield surfaces intro- 

duce their own issues [9] . For the dambreak problem, difficulties 

are compounded by the need to evolve the fluid surface and im- 

pose boundary conditions such as no-slip on the substrate under- 

neath the fluid. 

In the current paper, we present numerical computations of vis- 

coplastic dambreaks spanning a wide range of physical parameters. 

Our aim is to describe more fully the phenomenology of the col- 

lapse and its plugs, the form of the motion at initiation, and the 

detailed final shape. Our main interest is in the effect of the yield 

stress, so we consider Bingham fluid, ignoring any rate-dependence 
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Fig. 1. A sketch of the geometry for the case of a rectangular initial block. 

of the plastic viscosity. We mathematically formulate the dambreak 

problem in Section 2 and outline the numerical strategies we use 

for its solution. We use both an augmented-Lagrangian scheme 

and regularization of the constitutive law to account for viscoplas- 

ticity; to deal with the free surface, we use the volume-of-fluid 

method. The latter method emplaces the viscoplastic fluid beneath 

a less dense and viscous fluid, then tracks the interface between 

the two using a concentration field. This effectively replaces the 

single-phase dambreak problem with that of a two-phase miscible 

fluid displacement (we ignore surface tension), but introduces a 

significant complication when imposing a no–slip boundary condi- 

tion: because the lighter fluid cannot be displaced from the lower 

surface, the slumping heavier fluid over–rides a shallow finger of 

lighter fluid which lubricates the overlying flow and thins contin- 

ually, leading to difficulties with resolution. We expose this com- 

plication for a viscous test case in Section 3 , and identify means to 

avoid it. We then move on to a discussion of Bingham dambreaks 

in Section 4 , before concluding in Section 5 . The appendices con- 

tain additional technical details of the numerical schemes, asymp- 

totic theories for shallow or slender flow, and some related plas- 

ticity solutions. 

2. Formulation 

2.1. Dambreak arrangement and solution strategy 

To simulate the collapse of a Bingham fluid, we consider a 

two–fluid arrangement, with the yield-stress fluid emplaced un- 

derneath a lighter viscous fluid. We ignore any interfacial tension. 

The volume-of-fluid method is used to deal with the boundary be- 

tween the two fluids: a concentration field c ( x , y , t ) smooths out 

and tracks the fluid-fluid interface; c = 1 represents the viscoplas- 

tic fluid and the overlying Newtonian fluid has c = 0 . The concen- 

tration field satisfies the advection equation for a passive scalar; no 

explicit diffusion is included although some is unavoidable as a re- 

sult of numerical imprecision. Fig. 1 shows a sketch of the geome- 

try; the initial block of viscoplastic fluid has a characteristic height 

H and basal width 2 L , but we assume that the flow remains sym- 

metrical about the block’s midline and consider only half of the 

spatial domain. 

To deal with the yield stress of the viscoplastic fluid, we use 

both an augmented-Lagrangian scheme [10] and a regularization 

of the Bingham model. The numerical algorithm is implemented 

in C++ as an application of PELICANS 1 . We refer the reader to 

[11,12] for a more detailed description of the numerical method 

and its implementation. We use the regularized scheme as the 

1 https://gforge.irsn.fr/gf/project/pelicans/ ; PELICANS is an object-oriented plat- 

form developed at the French Institute for Radiological Protection and Nuclear 

Safety and is distributed under the CeCILL license agreement ( http://www.cecill. 

info/ ). 

main computational tool; the augmented–Lagragian algorithm is 

slower and was used more sparingly, specifically when looking at 

flow close to failure or during the final approach to rest. In most 

situations, the agreement between the two computations is satis- 

fying (examples are given below in Fig. 4 ); only at the initiation 

or cessation of motion is there a noticeable difference, primarily 

in the stress field (discounting the solution for the plug, which is 

an artifact of the iteration algorithm in the augmented–Lagrangian 

scheme). 

2.2. Model equations 

We quote conservation of mass, concentration and momentum 

for a two-dimensional incompressible fluid in dimensionless form: 

∇ · u = 0 , 
∂c 

∂t 
+ (u · ∇) c = 0 , (1) 

ρRe 

[
∂u 

∂t 
+ (u · ∇) u 

]
= −∇p + ∇ · τ − ρ ˆ z , (2) 

In these equations, lengths x = (x, z) are scaled by the characteris- 

tic initial height of the Bingham fluid, H, velocities u = (u, w ) by 

the speed scale U = ρ1 gH 

2 /μ1 , and time t by H/ U , where g is the 

gravitational acceleration; the stresses τ and pressure p are scaled 

by ρ1 gH. The Reynolds number is defined as Re = ρ1 UH/μ1 . Here, 

the subscript 1 or 2 on the (plastic) viscosity μ and density ρ dis- 

tinguishes the two fluids, and linear interpolation with the con- 

centration field c is used to reconstruct those quantities for the 

mixture; i.e. after scaling with the denser fluid properties, 

ρ = c + (1 − c) 
ρ2 

ρ1 

and μ = c + (1 − c) 
μ2 

μ1 

. (3) 

In dimensionless form, the unregularized Bingham constitutive 

law is ⎧ ⎨ 

⎩ 

˙ γ jk = 0 , τ < cB, 

τ jk = 

(
μ + 

cB 

˙ γ

)
˙ γ jk , τ > cB, 

τ = 

√ 

1 

2 

∑ 

j,k 

τ 2 
jk 

(4) 

where 

B = 

τY H 

μ1 U 

≡ τY 

ρ1 gH 

(5) 

is a dimensionless parameter related to the yield stress τ Y , and the 

deformation rates are given by 

˙ γ jk = 

∂u j 

∂x k 
+ 

∂u k 

∂x j 
, ˙ γ = 

√ 

1 

2 

∑ 

j,k 

˙ γ 2 
jk 
. (6) 

The regularized version that we employ is 

τ jk = 

(
μ + 

cB 

˙ γ + ε

)
˙ γ jk , (7) 

where ε is a small regularization parameter. We verified that the 

size of this parameter had no discernible effect on the results pre- 

sented below; we therefore consider irrelevant the precise form of 

the regularization (which is simple, but not necessarily optimal). 

We solve these equations over the domain 0 ≤ x ≤ � x = L x / H
and 0 ≤ z ≤ � z = L z / H, and subject to no-slip conditions, u = w = 0 

on the top and bottom surfaces (but see Section 3 ), and symme- 

try conditions on the left and right edges, u = 0 and w x = 0 . The 

computational domain is chosen sufficiently larger than the initial 

shape of Bingham fluid that the precise locations of the upper and 

right-hand boundaries ( i.e. � x and � z ) exert little effect on the flow 

dynamics. 
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