
ARTICLE IN PRESS 

JID: JNNFM [m5G; September 20, 2016;15:4 ] 

Journal of Non-Newtonian Fluid Mechanics 0 0 0 (2016) 1–16 

Contents lists available at ScienceDirect 

Journal of Non-Newtonian Fluid Mechanics 

journal homepage: www.elsevier.com/locate/jnnfm 

An accelerated dual proximal gradient method for applications in 

viscoplasticity 

Timm Treskatis a , 1 , ∗, Miguel A. Moyers-González 

a , Chris J. Price 

a 

School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand 

a r t i c l e i n f o 

Article history: 

Received 10 March 2016 

Revised 15 September 2016 

Accepted 16 September 2016 

Available online xxx 

MSC: 

49M29 

74C10 

76M10 

Keywords: 

Fast proximal gradient methods 

Augmented Lagrangian methods 

Viscoplastic fluids 

Adaptive finite elements 

a b s t r a c t 

We present a very simple and fast algorithm for the numerical solution of viscoplastic flow problems 

without prior regularisation. Compared to the widespread alternating direction method of multipliers 

(ADMM / ALG2), the new method features three key advantages: firstly, it accelerates the worst-case 

convergence rate from O (1 / 
√ 

k ) to O (1/ k ), where k is the iteration counter. Secondly, even for nonlinear 

constitutive models like those of Casson or Herschel–Bulkley, no nonlinear systems of equations have 

to be solved in the subproblems of the algorithm. Thirdly, there is no need to augment the Lagrangian, 

which eliminates the difficulty of choosing a penalty parameter heuristically. 

In this paper, we transform the usual velocity-based formulation of viscoplastic flow problems to a dual 

formulation in terms of the stress. For the numerical solution of this dual problem we apply FISTA, an 

accelerated first-order optimisation algorithm from the class of so-called proximal gradient methods. Fi- 

nally, we conduct a series of numerical experiments, focussing on stationary flow in two-dimensional 

square cavities. 

Our results confirm that Algorithm FISTA 

∗, the new dual-based FISTA, outperforms state-of-the-art algo- 

rithms such as ADMM / ALG2 by several orders of magnitude. We demonstrate how this speedup can be 

exploited to identify the free boundary between yielded and unyielded regions with previously unknown 

accuracy. Since the accelerated algorithm relies solely on Stokes-type subproblems and nonlinear function 

evaluations, existing code based on augmented Lagrangians would require only few minor adaptations to 

obtain an implementation of FISTA 

∗. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Viscoplasticity is a wide-spread phenomenon in both natural 

and man-made applications. The rich rheology of viscoplastic flu- 

ids is encountered in geophysics, considering the examples of lava 

flows or lahars [1,2] . Certain types of mineral oils, mud or slurry 

suspensions also exhibit viscoplastic features. In the consumer 

goods industry, toothpaste, hair gel, tomato sauce or dough serve 

as classical examples of such fluids [3] . 

The characteristic feature of a viscoplastic fluid is its ability to 

resist stress in the material up to a critical threshold, the so-called 

yield stress τ 0 . This behaviour is generally due to friction-type in- 

teractions between the molecules or particles of the fluid. Con- 

sequently, viscoplastic fluids behave like a rigid material at small 

∗ Corresponding author. 

E-mail address: timm.treskatis@pg.canterbury.ac.nz (T. Treskatis). 
1 Supported by a UC Doctoral Scholarship and the OptALI Exchange Programme 

stress. They only start shearing like a viscous liquid if the stress 

exceeds the threshold posed by the yield stress. 

1.1. Mathematical models for viscoplastic fluid flows 

We consider the problem of steady, creeping viscoplastic flow 

in a cavity, represented by the bounded domain �⊂ R 

d with (Lip- 

schitz) boundary ∂� = �. In practice, d ∈ {2, 3}. Our objective is 

to solve for functions u : � → R 

d , p : � → R and τ : � → R 

d×d 
sym 

, 

representing the flow velocity, pressure and deviatoric part of the 

stress, respectively. Furthermore, with the symmetric gradient op- 

erator D := (∇ + ∇ 

� ) / 2 , we denote the strain-rate tensor by ˙ γ : 

� → R 

d×d 
sym 

, which is linked to the flow velocity through the rela- 

tion ˙ γ = D u . 

The most common mathematical descriptions of viscoplastic 

behaviour are given by the Bingham [4] , the Casson [5] and the 

shear-thinning Herschel–Bulkley model [6] . With viscosity or con- 

sistency parameters μ, κ > 0 and an exponent 1 < r < 2, they can 
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be formulated as 

| τ| ≤ τ0 if ˙ γ = 0 

(1.1a) 

τ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 μ ˙ γ + τ0 
˙ γ

| ̇ γ | (Bingham) (√ 

2 μ| ̇ γ | + 

√ 

τ0 

)2 
˙ γ

| ̇ γ | (Casson) 

2 

r−1 κ| ̇ γ | r−2 ˙ γ + τ0 
˙ γ

| ̇ γ | (Herschel-Bulkley) 

if ˙ γ 
 = 0 . 

(1.1b) 

Here, | · | denotes the Frobenius norm on R 

d×d 
sym 

. 

In what follows, we consider a non-dimensionalised formula- 

tion that has been re-scaled with respect to a characteristic length 

L and velocity U , which reduces the dimensional constitutive rela- 

tions (1.1) to 

| τ| ≤ Bi if ˙ γ = 0 

(1.2a) 

τ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 ̇ γ + Bi ˙ γ
| ̇ γ | (Bingham) (√ 

2 | ̇ γ | + 

√ 

Bi 

)2 
˙ γ

| ̇ γ | (Casson) 

2 

r−1 | ̇ γ | r−2 ˙ γ + Bi ˙ γ
| ̇ γ | (Herschel-Bulkley) 

if ˙ γ 
 = 0 . 

(1.2b) 

The Bingham number Bi := 

τ0 L 
μU (Bingham, Casson) or Bi := 

τ0 L 
r−1 

κU r−1 (Herschel–Bulkley) quantifies the deviation of the viscoplas- 

tic flow from (generalised) Newtonian behaviour. 

Any of these constitutive relations, along with equations 

for conservation of momentum and mass, yield a system for 

the unknown flow variables. Denoting by f : � → R 

d a non- 

dimensionalised density of body forces, we have 

−Div τ + ∇p = f in � (1.3) 

div u = 0 in �. (1.4) 

To close the system, we incorporate the boundary condition 

u = u D on �, (1.5) 

where u D : �D → R 

d is given. We use the notation div (resp. Div) 

for the (rowwise) divergence operator. 

1.2. Variational formulation 

In the following, we use boldface letters for spaces to denote d - 

fold Cartesian products, e.g. for a space A we write A := A 

d . To ob- 

tain a mathematically rigorous formulation of the viscoplastic flow 

problem (1.2)–(1.5) in Sobolev spaces, we consider 

U := W 

1 ,r (�) 

U 0 ∗ := { u ∈ W 

1 ,r (�) | div u = 0 } 
U ∗0 := { u ∈ W 

1 ,r (�) | u | � = 0 } 
U 00 := { u ∈ W 

1 ,r (�) | div u = 0 and u | � = 0 } , 
with r = 2 in the Bingham and Casson settings. We use the dual 

of the latter space to fix the inhomogeneity f ∈ U 

∗
00 

and we pick 

boundary values u D ∈ U D , where 

U D := { u D ∈ W 

1 −1 /r,r (�) | 
∫ 
�

u D · n d s = 0 } . 
Furthermore, we define the convex set of admissible solutions 

U 0D := { u ∈ W 

1 ,r (�) | div u = 0 and u | � = u D } . 

For the strain-rate and stress tensors, we will also need spaces of 

symmetric matrices whose entries satisfy an integrability condition 

of order r or r ∗, respectively, where 1 /r + 1 /r ∗ = 1 : 

Q := L r (�) d×d 
sym 

S := L r 
∗
(�) d×d 

sym 

. 

By generalising the ideas of Duvaut and Lions [7,8] and Huilgol 

and You [9] , we conclude that the system (1.2)–(1.5) is a strong 

formulation of the following variational inequality problem of the 

second kind: find u ∈ U 0D such that for all test velocity fields v ∈ 

U 0D 

a (D u , D v − D u ) + j (D v ) − j (D u ) ≥ 〈 f , v − u 〉 U ∗
00 

,U 00 
. (1.6) 

This variational inequality is composed of the elliptic form a : Q ×
Q → R, 

a ( ̇ γ , ˙ δ) := 2 

∫ 
�

˙ γ : ˙ δ d x (Bingham) 

a ( ̇ γ , ˙ δ) := 2 

∫ 
�

˙ γ : ˙ δ d x + 2 

√ 

2 Bi 

∫ 
�

˙ γ√ | ̇ γ| : ˙ δ d x (Casson) 

a ( ̇ γ , ˙ δ) := 2 

r−1 

∫ 
�

| ̇ γ| r−2 ˙ γ : ˙ δ d x (Herschel–Bulkley) 

the nonsmooth functional j : Q → R, 

j( ̇ γ ) := Bi 

∫ 
�

| ̇ γ| d x 

and, on the right-hand side, a duality pairing between U 00 and its 

dual, which can be represented as 

〈 f , v − u 〉 U ∗
00 

,U 00 
= 

∫ 
�

f · ( v − u ) d x 

provided that f ∈ L r 
∗
(�) . The colon represents the Frobenius inner 

product of two d × d matrices, the dot the scalar product of two 

vectors in R 

d . 

It is an important observation that for each of the three vis- 

coplastic models, the term a (D u , D v − D u ) possesses special struc- 

ture: with the functional b : Q → R defined by 

b( ̇ γ ) := 

∫ 
�

| ̇ γ| 2 d x (Bingham) 

b( ̇ γ ) := 

∫ 
�

| ̇ γ| 2 d x + 

4 

√ 

2 Bi 

3 

∫ 
�

| ̇ γ| 3 / 2 d x (Casson) 

b( ̇ γ ) := 

2 

r−1 

r 

∫ 
�

| ̇ γ| r d x (Herschel–Bulkley) 

we may write 

a (D u , D v − D u ) = 〈 ∇ u b(D u ) , D( v − u ) 〉 Q ∗,Q 
as a directional derivative of b ◦ D at u in direction v − u . Conse- 

quently, we may identify the variational inequality (1.6) as a first- 

order optimality condition of the convex, and hence equivalent 

minimisation problem 

min 

u ∈ U 
b(D u ) + j(D u ) − 〈 f , u 〉 

L r 
∗
(�) , L r (�) + ιU 0D 

( u ) , ( VP ) 

where the indicator functional 

ιU 0D 
( u ) = 

{
0 if u ∈ U 0D 

+ ∞ if u / ∈ U 0D 

enforces the incompressibility constraint (1.4) and the Dirichlet 

boundary condition (1.5) . 

For full details of the derivation of Problem ( VP ), and results 

regarding existence and uniqueness of solutions, we refer to [10, 

Chapter 4] . 

While the Bingham and Casson flow problems are posed in 

Hilbert spaces, the Herschel–Bulkley model demands for a math- 

ematical treatment in more general Banach spaces. Despite extra 

theoretical challenges, a very practical consequence of this fact is 
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