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a b s t r a c t 

A general formulation of the governing equations for the slow, steady, two-dimensional flow of a 

thixotropic or antithixotropic fluid in a channel of slowly varying width is described. These equations 

are equivalent to the equations of classical lubrication theory for a Newtonian fluid, but incorporate the 

evolving microstructure of the fluid, described in terms of a scalar structure parameter. We demonstrate 

how the lubrication equations can be further simplified in the weakly advective regime in which the 

advective Deborah number is comparable to the aspect ratio of the flow, and present illustrative analyt- 

ical and semi-analytical solutions for particular choices of the constitutive and kinetic laws, including a 

purely viscous Moore–Mewis–Wagner model and a regularised viscoplastic Houška model. The lubrica- 

tion results also allow the calibration and validation of cross-sectionally averaged, or otherwise reduced, 

descriptions of thixotropic channel flow which provide a first step towards models of thixotropic flow in 

porous media, and we employ them to explain why such descriptions may be inadequate. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

Recent years have seen increasing interest in thixotropic flow. 

This interest stems both from applications, which include the flow 

of muds, processed foods, polymer solutions and waxy crude oils, 

and from the challenge that thixotropic fluids present to the mod- 

eller. Typically, the macroscopic rheological properties of such a 

fluid depend on its microscopic structure (for example, a network 

of flocculated colloidal particles or a tangle of long-chain polymers 

[1] ) and thixotropy arises because the microstructure gradually 

breaks down under shear and rebuilds through Brownian motion. 

The theoretical modeller is faced with two problems: the rheomet- 

ric problem of describing this build-up and breakdown, along with 

the corresponding relationship between the structure and the rhe- 

ology; and the fluid-dynamical problem of describing the resulting 

flows. 

Most attention has been paid to the rheometric problem. In 

the simplest models of thixotropic fluids, the state of the mi- 

crostructure is described by a scalar “structure parameter” λ, 

which evolves according to an advection–kinetic equation. Many 

such models have been developed over the last fifty years and cal- 

ibrated against rheometric data [1,2] . However, less research has 

been carried out on non-rheometric flows, and it is still uncer- 
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tain how thixotropy manifests itself even in many “classical” fluid- 

dynamical problems. 

Lubrication flow is a category of such classical problems. In the 

lubrication regime, the different streamwise and transverse length- 

scales of a flow allow the governing equations to be significantly 

simplified, and in some problems permit the transverse variation 

to be averaged out or otherwise eliminated from the problem [3,4] . 

Classical lubrication theory for a Newtonian fluid was first devel- 

oped by Reynolds [5] , and has since been extended to a number 

of non-Newtonian fluids. For example, the theory for viscoplas- 

tic fluids, first put on a systematic basis by Balmforth and Cras- 

ter [6] and subsequently extended [7–10] , has been applied to the 

flow of muds and lavas [11] . 

The basic assumptions of lubrication theory are directly appli- 

cable to several thixotropic flows of industrial or scientific interest, 

such as the motion of a thin layer of mud on a slope [12,13] or the 

flow of drilling muds or waxy crude oils in pipelines [14] . Lubri- 

cation scalings of the governing equations have been employed in 

several studies [15–18] to simplify the governing equations before 

integrating them numerically. Lubrication theory may also provide 

a useful starting point for investigating thixotropy in other con- 

texts, such as porous media, where, despite a need which was 

identified over a decade ago by Pearson and Tardy [19] , satisfac- 

tory models of thixotropic flow have yet to emerge. 

Although no general theory of lubrication flow has hitherto 

been developed for thixotropic fluids, several recent studies have 

presented models which help to point the way to such a theory. 
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In the flow realised, for example, in cone-and-plate rheometers, 

the shear rate is uniform in both the streamwise and the trans- 

verse directions. Thus, even for a thixotropic fluid, the relation- 

ship between shear stress and shear rate can be described in terms 

of ordinary differential equations. Several studies [20–22] have ex- 

tended this to configurations in which the shear rate may vary in 

the transverse direction but remains uniform in the streamwise di- 

rection: this represents a limiting case of the lubrication regime. 

In a preliminary study of such a configuration, Coussot et al. 

[12] modelled the acceleration of a uniform layer of fluid on an in- 

clined plane in terms of a layer-averaged streamwise velocity and 

a layer-averaged structure parameter. This further reduction of the 

equations recovers the simplicity of a purely time-dependent prob- 

lem, at the cost of the ad hoc assumption that the dynamics are 

well represented by layer-averaged quantities. 

Similar ad hoc reductions have been employed to model flows 

that were evolving both in the streamwise direction and in time: 

Chanson et al. [23] considered dam-break flow on an inclined 

plane, while Pritchard and Pearson [24] considered flow in a nar- 

row fracture, taken to be equivalent to Darcy flow in a porous 

medium. Both studies reduced the governing equations on the as- 

sumption that the rheological state of the fluid in a given cross- 

section could be characterised by a single quantity: [23] employed 

a “vertically averaged” value of the structure parameter, while 

[24] employed a “cross-sectionally averaged” value of the fluidity 

in a version of Bautista et al.’s [25] model. 

The study by Livescu et al. [26] , who considered the levelling 

of a thin film of thixotropic fluid on a horizontal substrate, rep- 

resents a bridge between lubrication theory and reduced mod- 

els. They simplified the governing hydrodynamic equations using a 

lubrication approximation, then integrated them numerically, and 

proposed a reduced model based on these numerical results. This 

approach is an advance on that of [23] and [24] , because it does 

not postulate in advance that the transverse variation of the struc- 

ture is known. However, the weakness of this approach is that the 

transverse variation must be obtained by numerical simulations of 

a non-reduced system, and there is no guarantee that the approxi- 

mate profiles for λ obtained in this way will be equally applicable 

to different rheologies or to different problems. 

With this in mind, our goal in this paper is to systematically 

develop the governing equations for lubrication flow of thixotropic 

and antithixotropic fluids in a slowly varying geometry. Given 

the uncertainties involved in the rheological characterisation of 

thixotropic fluids [2,14] , we will develop this lubrication theory as 

generally as possible, instead of following most previous studies by 

restricting our discussion to a specific rheology from the start. 

One category of behaviour exhibited by structure-parameter 

models will not be discussed here, although our approach could 

in principle be extended to include it. For certain choices of 

the kinetic model that determines the evolution of λ, even in 

steady uniform flow λ may have multiple equilibrium values for a 

given shear rate [20,27] . This non-uniqueness in turn causes non- 

monotonicity in the equilibrium stress–strain-rate curve and non- 

uniqueness of the equilibrium flow profiles. When the structure 

response time is very short, this behaviour may be described by 

considering a non-unique stress–strain-rate relation and tracking 

which branch of this relation applies at each point in the flow. If 

local flow conditions alter so that a solution on a given branch is 

no longer available, a “viscosity bifurcation” occurs and the struc- 

ture is assumed to adjust immediately to another branch. (Here 

we use the term “viscosity bifurcation” in the sense of Hewitt and 

Balmforth [27] , who incorporated this behaviour in a model of 

thin-film flow and tracked the surfaces in the flow where viscosity 

bifurcations occured.) While non-uniqueness is certainly worthy of 

further study and may be associated with important physical phe- 

nomena such as shear banding [28,29] , we do not regard it as the 

defining feature of thixotropic flow and so will not discuss it here. 

Moreover, ruling out non-uniqueness allows us to formulate our 

leading-order solutions in a convenient analytical form. For similar 

technical reasons we will not consider true yield-stress behaviour, 

although we will consider the behaviour of a regularised yield- 

stress model. We note that although in some materials thixotropy 

and yield stress are intimately linked phenomena, each may occur 

without the other [2,30] , so this is also not a fundamental restric- 

tion on the present analysis. 

In Section 2 we present the governing equations for thixotropic 

and antithixotropic fluids, and a systematic expansion of these 

equations for lubrication flow. In the course of this derivation we 

define an advective Deborah number D, and we show that dif- 

ferent regimes may be identified in terms of the relative mag- 

nitudes of this Deborah number and the small aspect ratio δ �
1 employed in the lubrication expansion. In Section 3 we spe- 

cialise to the “weakly advective” regime D = O(δ) , and develop 

semi-analytical solutions for general constitutive laws and struc- 

ture evolution laws. In Section 4 we present illustrative results for 

two thixotropic models: the purely viscous Moore–Mewis–Wagner 

model and a regularised version of the viscoplastic Houška model. 

In particular, we discuss the flow profiles across the channel, and 

consider pressure gradients and pressure drops in channels of 

specified shape. In Section 5 we investigate the behaviour of a re- 

duced Darcy model for channel flow, and show how lubrication 

theory can be used both to calibrate such models and to assess 

their validity. Finally, in Section 6 we summarise our results and 

discuss directions for the further development of our approach. 

2. Derivation of the lubrication equations 

2.1. Governing equations and boundary conditions 

We consider steady, two-dimensional flow of an incompressible 

thixotropic or antithixotropic fluid at zero Reynolds number. This 

flow is governed by the continuity equation 

∂ ̂  u 

∂ ̂  x 
+ 

∂ ̂  v 
∂ ̂  y 

= 0 , (1) 

where ˆ u ( ̂  x , ̂  y ) and 

ˆ v ( ̂  x , ̂  y ) are the velocity components in the ˆ x 

and ˆ y directions respectively, together with the steady generalised 

Cauchy momentum equations 

∂ ̂  p 

∂ ̂  x 
= 

∂ ̂  τxx 

∂ ̂  x 
+ 

∂ ̂  τxy 

∂ ̂  y 
and 

∂ ̂  p 

∂ ̂  y 
= 

∂ ̂  τyx 

∂ ̂  x 
+ 

∂ ̂  τyy 

∂ ̂  y 
, (2) 

where ˆ p ( ̂  x , ̂  y ) is the pressure, and where the shear stress tensor 

ˆ τi j depends on the shear rate tensor ˆ e i j and on the structure pa- 

rameter λ( ̂  x , ̂  y ) . Here and elsewhere a caret denotes a dimensional 

quantity while dimensionless quantities are unadorned. 

More specifically, we consider an ideal thixotropic fluid (in the 

sense of Larson [31] ) and take the shear stress tensor to be of gen- 

eralised Newtonian form, 

ˆ τi j = ˆ η( ˙ γ , λ) ̂  e i j , (3) 

for an apparent viscosity ˆ η that depends on both the total shear 

rate ˙ γ and on the local state of the microstructure represented by 

λ. The momentum equations (2) thus become 

∂ ̂  p 

∂ ̂  x 
= 

∂ 

∂ ̂  x 

[
2 ̂  η

∂ ̂  u 

∂ ̂  x 

]
+ 

∂ 

∂ ̂  y 

[
ˆ η

(
∂ ̂  u 

∂ ̂  y 
+ 

∂ ̂  v 
∂ ̂  x 

)]
(4) 

and 

∂ ̂  p 

∂ ̂  y 
= 

∂ 

∂ ̂  x 

[
ˆ η

(
∂ ̂  u 

∂ ̂  y 
+ 

∂ ̂  v 
∂ ̂  x 

)]
+ 

∂ 

∂ ̂  y 

[
2 ̂  η

∂ ̂  v 
∂ ̂  y 

]
. (5) 

The steady evolution equation for the structure parameter must 

represent the advection of microstructure along with its build-up 
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