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a b s t r a c t 

We examine the problem of a single heavier solid particle settling in a yield stress fluid that behaves as 

a classical Bingham plastic. The flow configuration we are interested in is the transient dynamics from 

a particle settling in a Newtonian fluid to a Bingham plastic. Depending on the magnitude of the yield 

stress (or dimensionlessly the Bingham number), the particle and the surrounding fluid may return to 

rest in a finite time or reach another steady but lower settling velocity. At the analytical level, we write 

the total kinetic energy decay of the system. We evidence the existence of a critical Bingham number 

beyond which motion is suppressed and derive upper bounds for the finite stopping time as well as the 

maximum path length. These estimates can be obtained in 2D only while the extension to 3D remains 

an open question. At the numerical level, we design a robust and efficient Lagrange multiplier based 

algorithm that enables us to compute actual finite time decay. The algorithm combines an Augmented 

Lagrangian outer loop to treat the exact Bingham law to a Distributed Lagrange Multiplier/Fictitious Do- 

main inner loop to account for freely-moving particles. We show that the ability to compute the balance 

between net weight (weight plus buoyancy) and yield stress resistance is the key point. The algorithm 

is implemented together with a Finite Volume/Staggered Grid algorithm in the numerical platform Peli- 

GRIFF. We investigate 2D configurations with the following particle shape: (i) a circular disc and (ii) a 2:1 

rectangle. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The settling of a particle in a yield stress fluid is the result 

of the balance between weight (the driving force, downwards ori- 

ented) and buoyancy (static pressure), dynamic pressure, viscous 

and yield stress resistance (all 4 upwards oriented). For a fixed 

net weight (weight plus buoyancy, i.e., weight computed using the 

density difference), the increase of the yield stress results in a 

lower particle settling velocity. Therefore, it is rather intuitive that 

there exists a critical yield stress such that the net weight cannot 

overcome the yield stress resistance and the motion is suppressed. 

In a dimensionless context, this critical yield stress translates into 

a critical Bingham number. This property has been evidenced ex- 

perimentally by many authors. The ability of a heavier particle or 

many heavier particles (suspension) to settle or not settle in a yield 

stress fluid can be seen in some processes or flows either as a con- 
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straint or as an interesting property to exploit. For instance, in in- 

dustrial applications, the suspending yield stress fluid can be de- 

signed in such a way that settling is suppressed (cuttings removal 

in drilling operations, slurry transport in mining, etc). In case of 

a poly-disperse suspension, the yield stress property of the sus- 

pending fluid can be exploited to screen particles of different size 

and/or different density. 

The general problem of estimating the settling velocity of a 

solid body of arbitrary shape in a yield stress fluid as well as the 

critical Bingham number beyond which the particle is motionless 

and the whole fluid is unyielded is both of practical and funda- 

mental interests. Experimentally, the flow configuration is pretty 

elementary (although thixotropy might be a problem in supplying 

reproducible results and most viscoplastic materials exhibit a cer- 

tain level of reversible elasticity below the yield stress). In a tank 

filled with a given yield stress material of reasonably well con- 

trolled yield stress, releasing objects of various size and density 

provides a nice setting to measure both the settling velocity and 

the critical Bingham number beyond which motion is suppressed 

[1–4] . Understanding the behavior of a single object (generally a 
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sphere) settling in a yield stress fluid represents the first step to 

investigating more complex phenomena in suspensions of particles 

in a yield stress fluid as e.g. shear-induced sedimentation [5] . 

At the analytical level, writing the whole problem in a varia- 

tional way enables one to define the critical Bingham number as 

the solution of an optimization problem, i.e., the supremum of the 

rate of doing work of the particle net weight over the plastic dis- 

sipation in the fluid. To determine a theoretical value of the criti- 

cal Bingham number, an admissible velocity field is required in the 

variational principle. This can be achieved for simple solid body 

shapes only, essentially a circular disc in 2D and a sphere in 3D. In 

particular, in the case of a disc, this critical Bingham number has 

been estimated to be 0.0658. Bounding the kinetic energy decay, 

an upper bound of the time required for the particle and fluid sys- 

tem to return to rest can be established. This bound can actually 

be derived in 2D only as in 3D the plastic dissipation term can- 

not be bounded from below in the right functional space. We will 

derive these equations in Section 3 . 

At the numerical level, the problem of a single particle set- 

tling in a yield stress fluid has received a significant attention in 

its reverse configuration, i.e., the flow past a fixed obstacle. Mostly 

spherical in 3D [6–8] and circular in 2D [9–13] obstacles have been 

considered, although these simulations could have easily been ex- 

tended to any kind of shape. Keeping the particle fixed and impos- 

ing an external flow simplifies the computations as it removes one 

difficulty, the need to handle a freely-moving particle (that actually 

exists regardless of the rheological nature of the surrounding fluid). 

However, the second difficulty associated to the numerical treat- 

ment of the yield stress constitutive equation is still present. As is 

now considered standard in the literature to compute the flow of a 

yield stress material in a fixed domain, two different types of solu- 

tion methods are employed. The former relies on the regularisation 

of the gradient discontinuity and undetermined value of the stress 

below the yield stress in the constitutive law. In essence, regular- 

isation methods involve using a smooth stress-strain rate purely 

viscous relation with an artificially high viscosity below the yield 

stress. The latter recasts the problem into the minimization of a 

functional and enables one to keep the true constitutive law (for 

more details the interested reader is referred to [14] ). Although 

the flow past an obstacle is an appropriate flow configuration to 

estimate the critical Bingham number beyond which flow does not 

exist, it does not permit to address the question of return to rest 

in finite time as generally a velocity boundary condition is im- 

posed in the solid body (or on the far field velocity) instead of 

a body force. In the special case of a disc in 2D and a sphere in 

3D assumed to have a simple translational motion along the direc- 

tion of gravity, the particle translational velocity can be introduced 

as an unknown and computed via a simplified force balance. To 

solve the full force balance on a solid body of arbitrary shape, one 

needs to consider the freely-moving particle case. Assorted numer- 

ical methods have been suggested in the literature to model the 

free motion of a solid particle immersed in a fluid [15–20] . One 

first step towards the accurate simulation of freely-moving solid 

bodies in a yield stress fluid consists in simply coupling a numer- 

ical technique for the viscoplastic nature of the surrounding fluid 

to another technique for the free motion of the particles. This has 

been attempted in [15,21] . Although these two contributions to the 

literature indeed supplied valuable simulation results for the flow 

of a single or two interacting spheres in a yield stress fluid, the 

adopted numerical methods were neither capable of simulating a 

situation where a particle remains motionless over an infinite time 

as a result of the yield stress resistance being larger than the net 

weight, nor the finite time decay of the flow (transition from a 

particle settling at a certain non-zero velocity to rest in finite time 

as a result of an increase of the yield stress beyond the limit of 

flow). In fact, the former [21] did not use the adequate time al- 

gorithm and the latter [15] anyway used a regularized constitutive 

law, that prevents from getting finite time decay even in a fixed 

domain. Not only considering the actual yield stress constitutive 

equation is required, but also solving implicitly the equations is 

crucial to properly satisfy the force balance on the solid particle. 

An adequate time algorithm is hence the key ingredient. 

An outline of our paper is as follows. In Section 2 , we formulate 

the dimensionless problem to be studied. The variational formula- 

tion is introduced in Section 3 and we outline the general prop- 

erties of the solutions, e.g. symmetry, reversibility, uniqueness. We 

explore the relation between mobility and resistance problems, for 

a Bingham fluid, and derive general results on the static stability 

limit (or load limit). In Section 4 , we elaborate on the way we con- 

struct an approprite semi-implicit solution method using a combi- 

nation of two Lagrange multiplier based numerical techniques. Also 

in Section 4 , the general analytical results are applied to the prob- 

lem of a circular disc and a 2:1 rectangle settling in a 2D planar 

domain, considering in particular the limit of zero flow at suffi- 

ciently large Bingham number. The paper ends with a brief discus- 

sion. 

2. Problem statement 

We consider the motion of a rigid particle P within a viscoplas- 

tic fluid in large but finite domain �. The fluid satisfies the follow- 

ing momentum and mass conservation equations: 

div ˆ T − ∇ ̂

 p + ˆ ρ f ̂  g = ˆ ρ f 

D 

D ̂

 t 
ˆ u , in � \ P , (1a) 

div ˆ u = 0 in � \ P , (1b) 

ˆ σ = − ˆ p δ + 

ˆ T , (1c) 

where ˆ u denotes the fluid velocity in the fluid domain � \ P , ˆ p is 

the pressure, ˆ σ is the total stress, ˆ T is the deviatoric stress ten- 

sor, ˆ g is the gravitational acceleration, of magnitude ˆ g , and ˆ ρ f is 

the fluid density. Throughout the paper we shall adopt the con- 

vention of denoting dimensional quantities and variables with the 

“hat” symbol, i.e., ̂  ·. 
Our main interest is in the interaction of the net weight with 

the yield stress. We therefore model the fluid using the Bingham 

model; see [22–24] . { 

ˆ T = 

(
ˆ μ + 

ˆ τy 

ˆ ˙ γ ( ̂ u ) 

)
ˆ ˙ γ( ̂  u ) , if ˆ T > ˆ τy 

ˆ ˙ γ( ̂  u ) = 0 if ˆ T ≤ ˆ τy 

, (2a) 

where ˆ τy and ˆ μ are the yield stress and plastic viscosity of the 

fluid, respectively. The tensor ˆ ˙ γ( ̂ u ) is the rate of strain tensor as- 

sociated with the velocity field 

ˆ u , defined component wise as 

ˆ ˙ γi j ( ̂  u ) : = 

∂ ̂  u i 

∂ ̂  x j 
+ 

∂ ̂  u j 

∂ ̂  x i 
, ˆ u = ( ̂  u , ̂  v , ˆ w ) = ( ̂  u 1 , ˆ u 2 , ˆ u 3 ) , 

ˆ x = ( ̂  x , ̂  y , ̂  z ) = ( ̂  x 1 , ̂  x 2 , ̂  x 3 ) . (2b) 

ˆ ˙ γ and 

ˆ T are (Euclidian) norms of ˆ ˙ γ and 

ˆ T , defined as 

ˆ ˙ γ ( ̂  u ) = ‖ ̂

 ˙ γ‖ = 

√ 

1 

2 

∑ 

i j 

ˆ ˙ γ 2 
i j 
( ̂  u ) and 

ˆ T = ‖ ̂

 T ‖ = 

√ 

1 

2 

∑ 

i j 

ˆ T 2 
i j 
. 

(2c) 

The main forces acting on P are localised at the particle, due 

to gravity. We therefore consider that the fluid is quiescent in the 

far-field, in all directions, and locate the outer boundary � in the 

quiescent zone. For yield stress fluids the precise location is not 

as important as for purely viscous fluids, because the motion of 
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