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a b s t r a c t 

We present numerical simulations of viscoplastic flows in expansion-contraction geometry and compare 

them with physical experiments of [Chevalier et al. Europhys. Lett. 102, 48002 (2013)] and [Luu et al. 

Phys. Rev. E 91, 013013 (2015)]. Numerical resolution is done with Augmented Lagrangian (following the 

Glowinski and coworkers’ approach) and Finite-Differences (for the space discretization) methods. We 

show that good agreement is obtained between the numerical results and the physical experiments. In 

particular, we retrieve the slip line effect of Luu et al. and give numerical evidence of non-monotone 

shear effect in the boundary layer between the two unyielded regions in the cavity region. We also give 

some more detailed measures of the size of the plug and dead zones. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the present article, we study the ability of Augmented La- 

grangian methods to simulate two dimensional flows of viscoplas- 

tic materials in rectangular expansion-contraction geometries. We 

are specifically interested in the numerical simulation of recent 

physical experiments of Chevalier et al. [6] and Luu et al. [19] . We 

provide a detailed analysis of the velocity profiles and unyielded 

zones. 

Even if the fluids used in the above experiments are described 

by a Herschel–Bulkley law, we restrict ourselves to a Bingham con- 

stitutive law since, as mentioned in the PhD thesis of Chevalier, it 

still allows to have good insight of these viscoplastic flows. This 

will be confirmed in the present article. Moreover for such experi- 

ments, flows are studied when reaching a stationary state. 

Precisely, we thus want to solve the following 2D stationary, so 

called, Stokes–Bingham problem: 

{−∇ .τ + ∇ p = 0 

∇ . u = 0 , 
(1) 
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where τ is given by the Bingham constitutive law: ⎧ ⎨ 

⎩ 

τ = 2 ηD (u ) + τy 
D (u ) 

| D (u ) | ⇔ D (u ) � = 0 

| τ | � τy ⇔ D (u ) = 0 . 

(2) 

The viscosity of the viscoplastic material is denoted by η and the 

yield stress by τ y . We denote by D ( u ) the rate of deformation ten- 

sor: D (u ) = (∇u + ∇u 

t ) / 2 , u = (u, v ) and by p the pressure. We 

also use the following convention: for a tensor τ , we use the norm 

| τ | 2 = 

1 
2 

∑ 

i j τ
2 
i j 

. The stress of the material is below the τ y thresh- 

old when the material is rigid ( D (u ) = 0 , also called the unyielded 

state). On the contrary, the material is deformed with a linear law 

for any stress above τ y . This kind of viscoplastic formalism origi- 

nated independently from the works of Schwedoff [31] and Bing- 

ham [3] , and was then extended to the 3D tensorial form by Prager 

[17] . 

The numerical simulation of Bingham flows generated a wide 

variety of methods to deal with the main difficulty of such prob- 

lem, namely the fact that the constitutive law is multivalued when 

the stress is below τ y . For an extensive review, we refer to the 

book of Glowinski and Wachs [15] . In brief, one can distinguish 

two families of approaches: on the one hand, regularization ap- 

proaches which make the Bingham law univalued and allow to 

solve (1) and (2) in the strong form, using classical methods as 

for the incompressible Stokes equation. Of note, even if sometimes 

very interesting from the theoretical PDE point of view, regular- 

ization approaches may lead from the computational viewpoint to 
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wrong computation of the yield surfaces associated to the exact 

Bingham model, see [12] for a review: an example of such prob- 

lem is given by Burgos et al. [4] where a simulated yield surface 

has the inverse convexity of the true expected analytic yield sur- 

face. 

On the other hand, one can use variational approaches where 

(1) and (2) is reformulated as a variational inequality which al- 

lows to solve more precisely for the rigid zones. They can be 

traced to the works of Il’iushin [18] , Prager [24] , Mosolov and Mi- 

asnikov [20] and Duvaut and Lions [10] . Efficient numerical tech- 

niques where designed following the works of Glowinski, Lions 

and Trémolières [10] and coworkers, including the so called Aug- 

mented Lagrangian (AL) methods which are used in the present 

paper and will be described in the following section. We refer 

again to [15] and references therein for numerous applications of 

AL methods in the simulation of viscoplastic flows. 

Of course, since it is widely used in practical applications, the 

expansion-contraction geometry has been studied in many previ- 

ous works. Let us mention the work of de Souza et al. [7] which 

seems to be the first work close to the present study: they present 

experiments with Carbopol and compare with numerical solutions 

obtained with a regularization method. In addition, similar config- 

urations are simulated in [28] and [29] using an AL method on un- 

structured meshes. Their code is implemented with the excellent 

Rheolef library [30] of Saramito and coworkers (see e.g. [26] for the 

flow around a cylinder). An impressive range of Bingham numbers, 

aspect ratios of the geometry and shapes of the cavity (rectan- 

gular, sinusoidal wave, triangular, semi-fractal) are presented. But 

they did not describe in depth the velocity profiles in conjunction 

with the plug zone, along the lines of the physical experiments of 

Coussot’s and Chambon’s groups [6,19] . 

The characteristics of the present paper are the following. 

• As said previously we use an AL approach and we adopt a 

Finite-Difference approach (on Cartesian meshes) for the dis- 

cretization in space. This is in the spirit of Wachs and co- 

workers (see [32] or, for a longer description, [15] ), as well as 

E. Muravleva, A. Muravleva, Olshanskii and coworkers (see e.g. 

[21] and [22] ) but our implementation differs on the resolution 

of the induced generalized Stokes problem which is here also 

tackled with another AL approach (to fulfill the incompressibil- 

ity condition). See Section 2.2 . In addition, we make a finely 

tuned use of parallel linear system solvers which helps in using 

very fine (isotropic) Cartesian meshes, not that often published 

in the simulation of viscoplastic flows considered here. 
• Code results are scrutinized in terms of accuracy of the localiza- 

tion of the plastic zone and computational times, given the fact 

that we impose a really small residue ( ∼ 10 −12 ) in the AL loop 

: such information are rarely given in the associated literature 

and can serve for future comparisons. 
• As a validation/application of the code, we retrieve in 

Section 3 the results of the frustrated regime studied in [6] and 

additionally show the evolution of the yielded boundary layer 

width as a function of the Bingham number. We also retrieve 

the existence of a so-called slip line and the Poiseuille-like be- 

havior above this slip line shown in [19] (see Section 4 ). Of 

note, we also give the horizontal length of the dead zone at 

the corner of the cavity as a function of the Bingham number 

( Section 2.3 ). 

2. Expansion-contraction channel simulations 

2.1. Description of the problem 

The geometry and notations of the expansion-contraction prob- 

lem are illustrated in Fig. 1 , where only the upper half is shown. 

In the following, we will use either (1) and (2) or their dimension- 

less form (by denoting dimensionless variables with a tilde symbol) 

which reads: { 

− ˜ ∇ . ̃  τ + 

˜ ∇ ̃

 p = 0 

˜ ∇ . ̃  u = 0 , 
(3) 

with ⎧ ⎨ 

⎩ 

˜ τ = 2 ̃

 D ( ̃  u ) + B 

˜ D ( ̃  u ) 

| ̃  D ( ̃  u ) | ⇔ 

˜ D ( ̃  u ) � = 0 

| ̃  τ | � B ⇔ 

˜ D ( ̃  u ) = 0 . 

(4) 

In this dimensionless Stokes–Bingham model, there is a unique di- 

mensionless number B = 

τy D 

ηŪ 
, called the Bingham number, where 

D is the small channel half-width (see Fig. 1 ) and Ū is the mean 

flow velocity in the x -direction at the entrance (see (5) ). Indeed, 

the dimensionless model is obtained from (1) and (2) by scaling 

the lengths with D , the velocities with Ū and stresses with 

ηŪ 
D . In 

dimensional variables, we have 

Ū = 

1 

D 

∫ D 

0 

u (0 , y )d y. (5) 

We consider the two following aspect ratios: 

h = 

D + H 

D 

and δ = 

D 

L 
. (6) 

In the inlet and outlet, we set the flow equal to the Poiseuille flow 

(with a unit net flux) in the infinitely long channel. At the lateral 

wall, the velocity is set equal to 0. See Appendix A.2 for details. Of 

note, in Section 3 , we will present the results in the dimension- 

less form, but we will use the dimensional form in Section 4 to 

compare more easily with the results of [19] . 

To sum up, in dimensionless variables, the free parameters are 

h , δ and the Bingham number B . 

2.2. Salient features of the numerical results 

As said in the introduction, we implemented an Augmented 

Lagrangian method as in the seminal work of Glowinski and 

coworkers [8,14] . The discretization in space is done with Finite- 

Differences on rectangular grids. As such, present work is comple- 

mentary to [28,29] since it allows to compare the results between 

structured and non-structured grids discretizations. For complete- 

ness and reproducibility of the paper, we give in Appendix A the 

algorithms we implemented with Fortran 90 and MPI. 

The first key point is that the simulations presented in the pa- 

per are much more converged in terms of the AL iterations than 

many of the associated simulations previously published. For in- 

stance, instead of enforcing a convergence of 10 −6 for the Bingham 

AL loop’s convergence criterion, we used 6 · 10 −12 (and also vali- 

dated the code up to machine precision 10 −15 ). The second impor- 

tant point is that the linear systems which need to be solved are 

handled by the MUMPS library [1,2] . This massively parallel solver 

allows us to use very fine meshes up to 7.8 · 10 6 points and to 

obtain computational times shorter than 2 days on 16 cores. 

Fig. 2 shows typical computed velocity, pressure and | ̃  d | (which 

approximates | ̃  D ( ̃  u ) | as shown in Algorithm 1 , cf. Appendix A.1 ) 

fields, for δ = 0 . 5 , h = 2 and B = 5 . We directly remark that ve- 

locity, pressure and deformation are symmetric with respect to 

both middle axis in the ˜ x and ˜ y directions (and it is the same for 

the stress tensors). Hence, often in the sequel, we only show the 

upper-left quarter of the domain. Further, as often done in the lit- 

erature, we cover the plastic zones in the stress fields with a black 

patch since there’s no consistent notion of pressure or stress in the 

rigid zone, for the Bingham model (1) and (2) . 
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