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a b s t r a c t 

Following Leal who gave the motion of a slender axisymmetric rod in a second-order fluid, we derived 

a complete rheological constitutive equation for dilute and semidilute slender rod suspensions in a vis- 

coelastic solvent based on a cell model. Numerical solutions for the Fokker–Planck equation are obtained 

for simple shear flows at low and large Peclet numbers using a finite volume method, hence avoiding 

the need for closure approximations. The second normal stress difference coefficient of the solvent plays 

a non-negligible role in the particle contribution to the stress as well as on the rod orientation dynam- 

ics: a spread of the particle orientation in the flow-vorticity plane and an enhancement of the alignment 

along the vorticity direction are predicted when increasing the second normal stress difference coef- 

ficient. Brunn extended the Leal analysis to dumbbells and tri-dumbbells, for which both normal stress 

difference coefficients have to be considered. The original Pipkin diagram is finally modified to help guide 

the choice of relevant constitutive equations for particles in viscoelastic fluids. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The rheological characterization of rod-filled media is of ma- 

jor concern to many industries, such as printing and papermaking, 

petroleum, polymer processing, aerospace, bioengineering, phar- 

maceutical industry, construction, ceramics, food, etc. Indeed, the 

behavior of the suspension is usually significantly different from 

that of the suspending fluid. The orientation distribution of rods 

induced by the flow field strongly influences certain macroscopic 

physical properties such as the rheological behavior of the suspen- 

sion, which itself governs the flow pattern. A large body of work 

in the literature has focused on the study of rod-filled Newtonian 

liquids, in which the rheological effects and the orientation evolu- 

tion of the rods are described [1,2] . Despite the fact that almost all 

solvents used in the industry are viscoelastic by nature, the under- 

standing and especially the modeling of the rheological behavior of 

rod-filled viscoelastic media remain a formidable challenge. Due to 

their complexity, only a limited amount of studies has attempted 

to embark on such an endeavor. 

Constitutive equations for rod filled viscoelastic systems may 

generally be considered as a two-component fluid, in which the 
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total stress of the composite can be assumed as [3] 

σ = −P δ + τm + τ p , (1) 

where P is the isotropic pressure, δ is the identity tensor, τm is the 

matrix contribution and τp is the particle contribution to the extra 

stress tensor. 

1.1. Newtonian suspending fluids 

When dealing with a Newtonian solvent of viscosity η0 , the 

particle contribution to the extra stress tensor ( τp ) at low rod vol- 

ume fraction φ takes the following general form [4] 

τ p = η0 φ
[
μ1 a 4 : ˙ γ + μ2 

(
˙ γ · a 2 + a 2 · ˙ γ

)
+ μ3 ̇  γ + 2 μ4 a 2 D r 

]
, (2) 

where ˙ γ is the deformation rate tensor. a 2 and a 4 are respec- 

tively the second- and fourth-order orientation tensors [5] which 

are commonly used to describe the average rod orientation state 

in an efficient and concise way, without any significant loss of in- 

formation. The coefficients { μi , i = 1 , 2 , 3 , 4 } in Eq. (2) are geomet- 

ric shape factors (see Table 1 in [2] ), and D r is the rotary diffu- 

sivity due to Brownian motion. For slender rods, particle thickness 

can be ignored and this is achieved by setting μ2 and μ3 equal 

to zero. If the particles are large enough so that Brownian motion 

can be ignored, the last term containing D r can be omitted. For in- 

stance, Sepehr et al. [6] have theoretically checked this assumption 

for short glass fiber suspensions, where the particle aspect ratio 

is close to 20. Once μ2 , μ3 and μ4 (or equivalently D r ) are set 
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to zero and μ1 is suitable chosen, Eq. (2) reduces to the expres- 

sion of Dinh and Armstrong [7] , where the particle thickness has 

been neglected in the derivation. Three regimes of rod concentra- 

tions related to characteristic particle dimensions are proposed in 

the literature [8] : dilute, for which φ < D 

2 / L 2 ; semidilute D 

2 / L 2 < 

φ < D / L and concentrated φ > D / L , where L and D are respectively 

the length and the diameter of the particle. 

Particle motion in a Newtonian fluid was investigated theoret- 

ically by Jeffery [9] , who solved the creeping flow equations for a 

rigid ellipsoid freely suspended in an infinite Newtonian fluid. In 

a simple shear flow, Jeffery’s solution shows that the particle cen- 

ter translates with the local fluid velocity and rotates in a time- 

dependent periodic orbit about the vorticity axis of the flow [see 

Eq. (6)]. Bretherton [10] indicates that the period of rotation for 

any axisymmetric particle is given by T r = 2 π( a r + a −1 
r ) / ̇ γ , where 

a r = L / D is the particle aspect ratio and ˙ γ is the applied bulk shear 

rate. Note that Jeffery’s theory is supported by extensive experi- 

mental results [11–13] . 

The orientation dynamics of a population of rods is commonly 

modeled through a time evolution equation of the second-order 

orientation tensor. This requires the use of closure approximations 

to express higher order orientation tensors [14–17] . For non-dilute 

rod suspensions in Newtonian fluids, most theories make use of 

the following expression 

D a 2 
Dt 

= −1 

2 

( ω · a 2 − a 2 · ω ) + 

λ

2 

(
˙ γ · a 2 + a 2 · ˙ γ − 2 a 4 : ˙ γ

)
+ 2 D r 

(
δ − 3 a 2 

)
, (3) 

where ω is the vorticity tensor, λ = (a 2 r − 1) / (a 2 r + 1) is a shape 

factor and D / Dt denotes the material derivative. The first two terms 

on the left-hand side of Eq. (3) represent the hydrodynamic con- 

tribution derived from the Jeffery’s equation and are valid for di- 

lute suspensions of ellipsoids in a Newtonian fluid at low Reynolds 

numbers. In order to describe concentrated non-Brownian particle 

suspensions, Folgar and Tucker [18] suggested modeling particle- 

particle interactions by means of D r = C I | ̇ γ | , where C I is an inter- 

action coefficient [19,20] and | ̇ γ | is the effective deformation rate. 

1.2. Viscoelastic suspending fluids 

With the prospect of modeling phenomena in composite pro- 

cessing, the general form of the constitutive equation cited above 

has been extended in various manners to include the effect of 

the viscoelastic polymer matrix on the suspension behavior. Ex- 

cept for a few studies in which rods are omitted and therefore the 

whole suspension is treated as a homogeneous viscoelastic fluid 

[21] , the particle contribution to the extra stress tensor, τp , is sim- 

ply obtained by replacing the Newtonian viscosity in Eq. (2) by that 

of the matrix η0 ≡ ηm ( ̇ γ , t ) , which can be shear rate-dependent, 

time-dependent or both. As for the evolution equation of a 2 , the 

expression in Eq. (3) is used without modification. 

Fan [22] derived a constitutive equation in the general frame- 

work of phase-space kinetic theory. In this study, the suspending 

fluid was assumed to behave as an Oldroyd-B fluid. Assuming that 

polymer chain motion was more strongly hindered in a direction 

crosswise to the rod axis compared to the lengthwise direction, 

interactions between fluid and rods were modeled by means of 

an anisotropic resistance coefficient [23,24] . Azaiez [3] used the ki- 

netic theory of elastic dumbbells and a rod orientation-dependent 

friction factor to develop constitutive equations for fiber suspen- 

sions in polymer solutions based on the FENE-P (Finitely Extensi- 

ble Non-linear Elastic - Peterlin), FENE-CR (Finitely Extensible Non- 

linear Elastic - Chilcott and Rallison), and Giesekus models. Ait- 

Kadi and Grmela [25] assumed that the viscoelastic matrix be- 

havior is governed by a second-order conformation tensor and 

obtained its time-evolution equation from the generalized Pois- 

son bracket formalism. Their choice for the Helmholtz free en- 

ergy function yields a FENE-P type viscoelastic matrix. This work 

was then extended by Ramazani and co-authors [26,27] , who in- 

troduced fiber-matrix interactions through anisotropic expressions 

for the mobility tensor. A similar approach was adopted by [28] to 

establish a rheological model for semi-flexible fiber suspensions in 

polymeric fluids described by a FENE-P model. Beaulne and Mit- 

soulis [29] used the K-BKZ integral constitutive equation with mul- 

tiple relaxation times as proposed by [30] for the polymer ma- 

trix. Some authors [31,32] applied the multi-mode Giesekus model 

[33] to predict the strain rate-dependent viscoelastic behavior of 

the polymer matrix. 

Nevertheless, none of the theories cited above considered the 

effects of the normal stress differences exhibited by the viscoelas- 

tic matrix. In view of the state of current approaches, the questions 

remaining open as to what should models include are: do rod sus- 

pensions behave differently in a viscoelastic matrix as compared 

to a Newtonian matrix, and does the suspending fluid elasticity 

contributes additional components to the particle stress tensor? In 

most of the previous studies, the rod orientation dynamic is based 

on the Jeffery’s equation, which was derived for Newtonian fluids. 

What would be the effect of elasticity on fiber orientations? 

Recently, D’Avino and Maffettone [34] compiled an exhaus- 

tive literature review on particle dynamics in viscoelastic liq- 

uids. Numerical simulations of the motion of spherical and el- 

lipsoidal particles in viscoelastic liquids are addressed as well as 

some experimental results. Pioneer experimental work was car- 

ried out by Saffman [35] , who observed that rods immersed in 

a non-Newtonian fluid undergoing Couette flow align along the 

vorticity axis. The same conclusions were reached over several 

decades by Mason and coworkers [36–39] , by Fuller and cowork- 

ers [40,41] using linear dichroism measurements, by Iso and co- 

authors [42,43] for weakly and highly elastic fluids, and by Gunes 

et al. [44] , who coupled rheo-optical methods and flow microscopy 

to analyze the dynamics of spheroidal particles. However, no com- 

plete model was clearly identified as only few theoretical studies 

deal with the behavior of rods in a viscoelastic fluid. 

A leading modeling study was conducted by Leal [45] , who de- 

rived the motion of a slender rod in a second-order fluid (SOF) un- 

dergoing simple shear flow. The velocity field produced by the rod 

was expressed as a perturbation from the Newtonian flow solution. 

As compared to the Jeffery’s solution, the particle still translates 

with the local undisturbed velocity of the suspending fluid but its 

orientation time evolution involves the second normal stress differ- 

ence coefficient of the fluid [Eq. (7)]. Later, Brunn [46,47] derived 

analogous equations for rigid tri-dumbbells [Eq. (8)] and 1st-order 

dumbbells [Eq. (9)], for which the condition of a non-zero second 

normal stress difference can be relaxed. Harlen and Koch [48] con- 

sidered an Oldroyd-B fluid and showed that the first normal stress 

difference is responsible for the particle alignment along the vor- 

ticity axis. Hence, all these theories predict a particle drift towards 

the vorticity axis, instead of following a closed orbit as suggested 

by Jeffery’s analysis in Newtonian fluids. This drift appears to arise 

from the normal stress differences of the fluid. 

Despite good quantitative agreements between Leal’s theoreti- 

cal predictions and experimental results, few models have emerged 

to describe the rheological behavior of such systems. The orienta- 

tion distribution of rods in a SOF in simple shear flow has been an- 

alyzed at the asymptotic limit of weak [49] and strong [50] Brown- 

ian diffusion. In the latter, the Fokker–Planck equation is solved for 

the near-equilibrium conditions by using spherical harmonics and 

truncating the resulting infinite series. The non-Newtonian proper- 

ties of the fluid result in a narrower distribution of particles near 

the shear plane, but cause a spread in the orientation in the flow 

direction due to the drift towards the vorticity axis. Using a finite 
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