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a b s t r a c t 

In this work, we modify the viscoelastic solver available in the OpenFOAM 

® toolbox (Favero et al., 2010), 

in order to improve its stability for differential-type constitutive equations. The Oldroyd-B constitutive 

equation is solved using the log-conformation approach and the high-resolution schemes used to dis- 

cretize the convective terms are handled with a component-wise and deferred correction approach. The 

pressure-velocity coupling is ensured using the SIMPLEC algorithm, and a new stress-velocity coupling 

term is also introduced. We demonstrate that the new solver is second-order accurate, both in space and 

time, by assessing the performance in problems with known analytical solution and using Richardson’s 

extrapolation. The solver is further tested on the 4:1 planar contraction benchmark problem using an 

Oldroyd-B fluid ( β = 1/9) at low Reynolds number flow conditions ( Re = 0.01), considering a wide range 

of Deborah numbers, 0 ≤ De ≤ 12. A good agreement with reference works is observed at low De, as well 

as with an in-house viscoelastic flow solver. At higher De , the vortex dynamics is essentially controlled 

by the singularity region in the re-entrant corner of the contraction, revealing a significant dependence 

of the numerical results on the mesh resolution. The corner vortex dynamics is also analyzed, from the 

flow startup at several De , providing new accurate data on the transient behavior of this problem. In 

summary, this work provides a robust open-source solver for viscoelastic flows, as well as new data on 

an old problem, which has still open questions and challenges. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

The flow of viscoelastic fluids has scientific and industrial rel- 

evance, and has been a matter of intensive research over the last 

decades. Currently, the available constitutive models arising from 

different theories can reasonably predict some exotic behaviors of 

viscoelastic fluids, such as the rod climbing or the die swell effects 

[1] . However, some experimental observations are still hardly pre- 

dicted by the actual models and a number of open problems exist 

in this area of research [2,3] . Far from being only a field of aca- 

demic interest, computational rheology is also important for the 

industry working with such complex fluids, since, for example, a 

significant waste reduction could be obtained if the elastic phe- 

nomena involved were better understood and predicted [3,4] . 

Due to the high complexity of the constitutive equations used 

to model viscoelastic fluids, numerical methods have been the 

workhorse to simulate real-life problems, among which finite- 

difference, finite-element and finite-volume methods should be 
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emphasized. These three methods start from the same set of closed 

form partial differential equations, but their discretization, both 

in space and time, is handled differently in each approach, lead- 

ing to different advantages/drawbacks regarding accuracy, stabil- 

ity, computational cost and versatility to handle different cases. 

While it is outside the scope of this work to present a compari- 

son between the three numerical methods, it is worth to mention 

that the finite-volume method is especially well suited for general 

CFD (Computational Fluid Dynamics) problems due to its intrinsic 

conservative properties. An additional feature to be taken into ac- 

count, mostly within the industrial context, is the availability of a 

software package that can be used with reliability to perform the 

numerical simulation. Although there are numerous options, both 

commercial and open-source, to handle Newtonian and also non- 

Newtonian inelastic fluids, the range of options is more limited for 

viscoelastic fluid flow simulations. Open-source packages are par- 

ticularly attractive due to being cost-free for the user and usually 

allowing the customization of the available source code. 

The OpenFOAM 

® toolbox is an open-source finite-volume 

solver, which can handle general unstructured polyhedral meshes 

and perform parallel computations. A general viscoelastic solver 
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has already been developed in OpenFOAM 

® [5] , which has been 

used in several works, including single-phase [6–9] and two-phase 

[10,11] flow studies. Habla et al. [12] modified this solver in or- 

der to strengthen the coupling between velocity and polymeric 

stresses, through a semi-implicit handling of the constitutive equa- 

tion. The robustness of the solver was further increased with the 

implementation of the log-conformation approach [13] , allowing to 

reach higher Weissenberg numbers ( Wi ) without loss of positive 

definiteness of the conformation tensor. Nevertheless, to the best 

of our knowledge, none of these recent solver improvements has 

been made available to the public. 

In this work, we further extend the previous efforts [5,12,13] di- 

rected to increase the robustness and accuracy of the viscoelas- 

tic solver in OpenFOAM 

®. We implement the log-conformation 

methodology in a similar approach as described in Habla et al. 

[13] and in Afonso et al. [14] , but further modifications are intro- 

duced that can increase the stability and also the computational 

speed. Those modifications are mainly related with the pressure- 

velocity and stress-velocity coupling, the discretization of convec- 

tive terms and with the sparse matrix solver used to compute the 

solution of the linear system of equations. 

The remainder of this paper is organized as follows: the govern- 

ing equations and the numerical method are described in Section 

2 , along with the modifications introduced in the original solver 

of OpenFOAM 

®. In Section 3 , we first assess the spatial and tem- 

poral order of convergence of the modified solver, after which the 

4:1 planar contraction benchmark is addressed. The results for this 

benchmark problem are compared against reference works, as well 

as with an in-house solver that has been thoroughly validated 

in the past [14–17] . Finally, Section 4 presents the main conclu- 

sions of this work. In addition to describe and provide access to 

the source code of a robust open-source viscoelastic flow solver 

(available for download on GitHub: https://github.com/fppimenta/ 

rheoTool ), this work also presents new insights and accurate re- 

sults in the 4:1 planar contraction benchmark flow problem. 

2. Governing equations and numerical method 

2.1. Overview of the original viscoelasticFluidFoam solver [5] 

The OpenFOAM 

® viscoelastic solver originally developed by 

Favero et al. [5] , named viscoelasticFluidFoam , can be found in the 

extend version of OpenFOAM 

®. Several constitutive models are 

available at runtime, including multi-mode modelling. Focusing on 

the Oldroyd-B model [18] , which is used in the present work, the 

following set of equations is solved [5] : 

∇ · u = 0 (1) 

ρ

(
∂u 

∂t 
+ u · ∇u 

)
− ∇ · [ ( ηs + ηp ) ∇u ] = 

−∇p − ∇ ·
(
ηp ∇u 

)
+ ∇ · τ + f (2) 

τ + λ

(
∂τ

∂t 
+ u · ∇τ − τ · ∇u − ∇u 

T · τ
)

= ηp 

(∇u + ∇u 

T 
)

(3) 

where u is the velocity vector, t is the time, p is the pressure, τ is 

the polymeric contribution to the extra-stress tensor, f represents 

any external forcing per unit volume, ρ is the fluid density, ηs is 

the solvent viscosity, ηp is the polymeric viscosity and λ is the re- 

laxation time. 

The continuity equation is represented by Eq. (1) , while 

Eq. (2) describes the momentum balance. The extra-stress tensor 

( τ’ ) was split in polymeric ( τ) and solvent ( τs ) contributions, such 

that τ’ = τ + τs , with τs = ηs ( ∇u + ∇u 

T ). After mathematical ma- 

nipulation, the divergence of τs appears in Eq. (2) as a diffusive 

term ( ∇ ·ηs ∇ u ) to be discretized implicitly, while the divergence of 

τ is discretized explicitly. Furthermore, a stabilizing diffusive term 

( ∇ ·ηp ∇ u ) is added to both sides of Eq. (2) [19] , one discretized 

implicitly (lhs) and the other one explicitly (rhs), which in steady- 

state exactly cancel each other – a technique known as both-sides 

diffusion (BSD). 

The constitutive equation for the polymeric component of 

the extra-stress tensor is described by Eq. (3) . For the Oldroyd- 

B constitutive model, a solvent viscosity ratio can be defined, 

β = ηs / (ηp + ηs ) = ηs /η0 , also known as retardation ratio. When 

β = 0, the Upper-Convected Maxwell (UCM) model is recovered. 

In the original viscoelasticFluidFoam solver [5] , the governing 

equations are solved sequentially in a segregated manner, where 

the momentum equation ( Eq. 2 ) is solved first, followed by the 

continuity (pressure) equation ( Eq. 1 ) and finally the constitutive 

equation ( Eq. 3 ). The pressure-velocity coupling is ensured using 

the PISO (Pressure-Implicit Split Operator) algorithm [20] . 

In the following sections, we describe the main modifications 

introduced in the original viscoelasticFluidFoam solver [5] , which 

can increase its stability and computational speed, while keeping 

second-order accuracy, both in time and space. 

2.2. The log-conformation approach 

The numerical difficulties arising at high Weissenberg num- 

ber flows are well known in the literature and they were com- 

monly associated with a loss of resolution of discretization meth- 

ods to solve the exponential growth of stresses at critical points 

[21] . A common indicator of such undesirable situation is the loss 

of positive definiteness of the conformation tensor [21] , which 

can ultimately lead to numerical divergence. Several solutions 

were proposed to remedy this problem and most of them con- 

sist in a change of variable in the constitutive equation [21–24] . 

The log-conformation approach proposed by Fattal and Kupferman 

[21,24] became such a popular methodology, based on the refor- 

mulation of the constitutive equation in terms of the logarithm of 

the conformation tensor, which naturally keeps the conformation 

tensor positive definite and linearizes the stress field in regions of 

exponential growth, leading to enhanced numerical stability [24] . 

Habla et al. [13] were among the first to document the im- 

plementation of the log-conformation approach in OpenFOAM 

®, as 

aforementioned. In the present work, we follow essentially this im- 

plementation, which is briefly described next. For details on the 

mathematics behind each step, we refer the reader to the seminal 

works of Fattal and Kupferman [21,24] . 

The relation between the conformation tensor ( A ) and the poly- 

meric extra-stress tensor for the Oldroyd-B model is given by 

τ = 

ηp 

λ
( A − I ) (4) 

Since A is positive definite, it can be diagonalized in the form 

A = R � R 

T (5) 

where the columns of the orthogonal tensor R are the eigenvec- 

tors of A and the diagonal matrix � contains the corresponding 

eigenvalues. 

Instead of solving the constitutive equation in A , Fattal and 

Kupferman [21,24] reformulated Eq. (3) in terms of the natural log- 

arithm of A , 

� = ln ( A ) = R ln ( �) R 

T (6) 

leading to the following evolution equation for �

∂�

∂t 
+ u · ∇� − ( �� − ��) − 2 B = R 

[ 
1 

λ

(
�−1 − I 

)] 
R 

T (7) 

https://github.com/fppimenta/rheoTool


Download English Version:

https://daneshyari.com/en/article/4995640

Download Persian Version:

https://daneshyari.com/article/4995640

Daneshyari.com

https://daneshyari.com/en/article/4995640
https://daneshyari.com/article/4995640
https://daneshyari.com

