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We consider the convective instability of the BEK family of rotating boundary-layer flows for shear-
thinning power-law fluids. The Bodewadt, Ekman and von Karman flows are particular cases within this
family. A linear stability analysis is conducted using a Chebyshev polynomial method in order to investi-
gate the effect of shear-thinning fluids on the convective type I (inviscid crossflow) and type II (viscous
streamline curvature) modes of instability. The results reveal that an increase in shear-thinning has a uni-
versal stabilising effect across the entire BEK family. Our results are presented in terms of neutral curves,
growth rates and an analysis of the energy balance. The newly-derived governing equations for both the
steady mean flow and unsteady perturbation equations are given in full.
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1. Introduction

There has been significant interest in the stability and transi-
tion of the three-dimensional boundary-layer flow due to the ro-
tating disk (that is the von Karman [1] flow) in recent decades. The
seminal study of the stability properties of the Newtonian rotating-
disk boundary layer was performed by Gregory et al. [2], and there
the first experimental observation of stationary crossflow vortices
and the first theoretical stability analysis are presented. Some years
later, Malik [3], utilsing the parallel-flow approximation, extended
Gregory et al.’s high-Reynolds-number analytics and computed the
neutral curves for stationary disturbances. Malik identified two dis-
tinct instability modes. The first mode (denoted type I), due to in-
viscid crossflow instability, was shown to be the dominant mode
and was associated with Gregory et al.’s prior results. The addi-
tional second mode (denoted type II) was shown to be viscous in
nature and attributed to external streamline curvature and Corio-
lis forces. In the same year Hall [4], approached the problem rig-
orously and presented a high-Reynolds-number linear asymptotic
analysis. Complete agreement between Hall and Malik’s studies is
found in the appropriate parameter limit.

Following these important milestones the seemingly simple sys-
tem has continued to attract attention and it remains under active
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investigation to this day. The interested reader is referred to the
literature for full information on the latest developments concern-
ing the transition to turbulence via the generation of a non-linear
global mode (see, for example, [5-8]).

This paper is concerned with the stability characteristics of the
family of boundary-layer flows attributed to a differential rotation
rate between a lower disk and upper fluid in rigid-body rotation.
Particular arrangements of this dual rotating system include the
von Karman [1], Ekman [9], and Bédewadt [10] boundary-layer
flows. The von Karman boundary layer arises when the lower disk
rotates under a stationary fluid, the Ekman layer occurs when the
disk and fluid rotate with approximately the same angular velocity,
and the Bodewadt layer occurs when the fluid rotates above a sta-
tionary disk. There is a continuum of intermediate cases between
these standard configurations and collectively these form the BEK
family.

The mean-flow solutions of the entire BEK family for Newto-
nian flows are well understood [11-13]. In contrast, the stability
characteristics of this family of flows has received relatively min-
imal attention, motivated largely by a desire to simply generalise
the active research on the rotating-disk (i.e. von Karman) system.
In particular, Lingwood [14] presents local convective and absolute
instability analyses of the Newtonian boundary layer and concludes
that the limiting case of the rotating disk is the most stable con-
figuration within the family. More recently, Lingwood and Garrett
[15] discuss the use of mass flux through the lower disk as a po-
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tential flow-control mechanism. Various experimental studies con-
cerning the stability, transition and control of these types of flows
has been an area of more recent active research [16-18].

It is our intention here to generalise Lingwood’s original work
in this area to incorporate the effects of non-Newtonian fluids. Our
motivation is to explore the potential for using such fluids to opti-
mise the performance of rotor-stator systems in engineering appli-
cations.

With regards to prior studies of the non-Newtonian boundary-
layer flow over a rotating disk, Mitschka and Ulbrecht [19] were
the first to extend the von Karman similarity solution to incor-
porate fluids that adhere to a power-law governing viscosity re-
lationship. That study, involving both shear-thickening and shear-
thinning fluids, was later verified by Andersson et al. [20] in order
to test the reliability of their numerical solutions. However, further
to this, Denier and Hewitt [21] readdressed the problem showing
that asymptotic matching considerations need to be taken in to
account in order to able to accurately describe the flow of shear-
thinning power-law fluids. In the shear-thickening regime it tran-
spires that the boundary-layer solutions are complicated by a re-
gion of zero viscosity away from the wall. For these reasons, in this
study, we will restrict our attention to moderately shear-thinning
fluids only. For full details regarding the asymptotic structure of
the solutions the interested reader is refereed to Denier and He-
witt [21].

Much more recently Griffiths et al. [22] considered a rigorous
asymptotic stability analysis of the shear-thinning boundary-layer
flow over a rotating disk. This work was then extended by the
same authors Griffiths et al. [23], to compute the neutral curves
of convective instability (working under the parallel-flow assump-
tion) and complete agreement was found with their prior asymp-
totic analysis. These two papers can be considered as the non-
Newtonian generalisations of Hall [4] and Malik [3], respectively.
Griffiths [24] later extends the power-law studies to include the
Bingham [25] and Carreau [26] models of non-Newtonian viscosity.
He finds that a generalisation of the von Karman similarity solu-
tion is applicable for a variety of different inelastic and viscoplastic
non-Newtonian models.

In this current paper we extend the non-Newtonian, inelastic
study of Griffiths et al. [23], to the entire BEK family of rotating
boundary-layer flows. A Chebyshev polynomial method is used to
consider the effects shear-thinning power-law fluids have on the
type I and type Il modes of instability.

This paper proceeds as follows: In Section 2 the steady
boundary-layer flows of the BEK system for fluids with a gov-
erning viscosity relationship adhering to a power-law model are
formulated and the profiles presented. A local convective insta-
bility analysis is presented in Section 3 and the neutral curves,
critical Reynolds numbers, and convective growth rates are de-
tailed for a variety of flow parameters. An energy-balance analysis
is considered in Section 4 and finally our conclusions are drawn
in Section 5. All newly-derived equations are presented in detail
where appropriate in our discussion.

2. Formulation

We consider a family of incompressible, shear-thinning
boundary-layer flows above an infinite rotating disk located
at z* = 0. Distinct flows within this family are generated by a dif-
ferential rotation rate between this solid boundary and a fluid in
rigid-body rotation (see [14,15]). Particular cases within the family
are the Bodewadt, Ekman and von Karman boundary layer flows
and we denote the entire family as the BEK system. Both rotating
components (disk and fluid) are assumed to rotate in the same
direction and about the same vertical axis with angular velocities
Q2 and Qf, respectively. The von Karmén layer appears when the

fluid is stationary and the disk rotates, i.e, Qf =0 and Qf # 0;
the Ekman layer is such that Q} ~ Qj; and the Bodewadt is such
that 2 # 0 and j; = 0. Furthermore, there exists a continuum of
cases between these particular examples in which both the disk
and fluid rotate with different angular velocities.

The continuity and Navier-Stokes equations in a frame of ref-
erence rotating with the lower disk, at fixed angular velocity, are
expressed as follows

V.u* =0, (1a)
Ju*
at*+u*-Vu*+SZ*x(SZ*xr*)-i—Zﬂ*xu*
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Here u* = (U*,V*,W*) are the velocity components in cylin-
drical polar coordinates (r*, 6, z*), t* is time, * = (0,0, 2*) and
r* = (r*,0,z*). The fluid density is p* and p* is the fluid pressure.

The stress tensor t* for generalised Newtonian models, such as
the power-law model, is defined by

T =yt with pt = pr(y*),
where p* = Vu* + (Vu*)T is the rate of strain tensor and *(y*)

is the non-Newtonian viscosity. The magnitude of the rate of strain
tensor is given by

e VYT

For power-law fluids the governing relationship for p*(y*) is
Wy =m(ye)", (2)

where m* is the consistency coefficient and n is the dimensionless
power-law index. For n < 1 we have a pseudoplastic fluid where the
viscosity decreases with increased rate of strain (i.e., shear thin-
ning). For n > 1 we have a dilitant fluid where the viscosity in-
creases with increased rate of strain (i.e., shear thickening). The
classical Newtonian viscosity law is recovered for the particular pa-
rameter value n = 1.

The governing boundary-layer equations are formulated in a
frame rotating with the lower disk, i.e., at 23, and are expressed
in cylindrical-polar coordinates (r*, 8, z*) as
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