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a b s t r a c t 

We consider the convective instability of the BEK family of rotating boundary-layer flows for shear- 

thinning power-law fluids. The B ödewadt, E kman and von K ármán flows are particular cases within this 

family. A linear stability analysis is conducted using a Chebyshev polynomial method in order to investi- 

gate the effect of shear-thinning fluids on the convective type I (inviscid crossflow) and type II (viscous 

streamline curvature) modes of instability. The results reveal that an increase in shear-thinning has a uni- 

versal stabilising effect across the entire BEK family. Our results are presented in terms of neutral curves, 

growth rates and an analysis of the energy balance. The newly-derived governing equations for both the 

steady mean flow and unsteady perturbation equations are given in full. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

There has been significant interest in the stability and transi- 

tion of the three-dimensional boundary-layer flow due to the ro- 

tating disk (that is the von Kármán [1] flow) in recent decades. The 

seminal study of the stability properties of the Newtonian rotating- 

disk boundary layer was performed by Gregory et al. [2] , and there 

the first experimental observation of stationary crossflow vortices 

and the first theoretical stability analysis are presented. Some years 

later, Malik [3] , utilsing the parallel-flow approximation, extended 

Gregory et al.’s high-Reynolds-number analytics and computed the 

neutral curves for stationary disturbances. Malik identified two dis- 

tinct instability modes. The first mode (denoted type I), due to in- 

viscid crossflow instability, was shown to be the dominant mode 

and was associated with Gregory et al.’s prior results. The addi- 

tional second mode (denoted type II) was shown to be viscous in 

nature and attributed to external streamline curvature and Corio- 

lis forces. In the same year Hall [4] , approached the problem rig- 

orously and presented a high-Reynolds-number linear asymptotic 

analysis. Complete agreement between Hall and Malik’s studies is 

found in the appropriate parameter limit. 

Following these important milestones the seemingly simple sys- 

tem has continued to attract attention and it remains under active 
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investigation to this day. The interested reader is referred to the 

literature for full information on the latest developments concern- 

ing the transition to turbulence via the generation of a non-linear 

global mode (see, for example, [5–8] ). 

This paper is concerned with the stability characteristics of the 

family of boundary-layer flows attributed to a differential rotation 

rate between a lower disk and upper fluid in rigid-body rotation. 

Particular arrangements of this dual rotating system include the 

von Kármán [1] , Ekman [9] , and Bödewadt [10] boundary-layer 

flows. The von Kármán boundary layer arises when the lower disk 

rotates under a stationary fluid, the Ekman layer occurs when the 

disk and fluid rotate with approximately the same angular velocity, 

and the Bödewadt layer occurs when the fluid rotates above a sta- 

tionary disk. There is a continuum of intermediate cases between 

these standard configurations and collectively these form the BEK 

family. 

The mean-flow solutions of the entire BEK family for Newto- 

nian flows are well understood [11–13] . In contrast, the stability 

characteristics of this family of flows has received relatively min- 

imal attention, motivated largely by a desire to simply generalise 

the active research on the rotating-disk (i.e. von Kármán) system. 

In particular, Lingwood [14] presents local convective and absolute 

instability analyses of the Newtonian boundary layer and concludes 

that the limiting case of the rotating disk is the most stable con- 

figuration within the family. More recently, Lingwood and Garrett 

[15] discuss the use of mass flux through the lower disk as a po- 
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tential flow-control mechanism. Various experimental studies con- 

cerning the stability, transition and control of these types of flows 

has been an area of more recent active research [16–18] . 

It is our intention here to generalise Lingwood’s original work 

in this area to incorporate the effects of non-Newtonian fluids. Our 

motivation is to explore the potential for using such fluids to opti- 

mise the performance of rotor-stator systems in engineering appli- 

cations. 

With regards to prior studies of the non-Newtonian boundary- 

layer flow over a rotating disk, Mitschka and Ulbrecht [19] were 

the first to extend the von Kármán similarity solution to incor- 

porate fluids that adhere to a power-law governing viscosity re- 

lationship. That study, involving both shear-thickening and shear- 

thinning fluids, was later verified by Andersson et al. [20] in order 

to test the reliability of their numerical solutions. However, further 

to this, Denier and Hewitt [21] readdressed the problem showing 

that asymptotic matching considerations need to be taken in to 

account in order to able to accurately describe the flow of shear- 

thinning power-law fluids. In the shear-thickening regime it tran- 

spires that the boundary-layer solutions are complicated by a re- 

gion of zero viscosity away from the wall. For these reasons, in this 

study, we will restrict our attention to moderately shear-thinning 

fluids only. For full details regarding the asymptotic structure of 

the solutions the interested reader is refereed to Denier and He- 

witt [21] . 

Much more recently Griffiths et al. [22] considered a rigorous 

asymptotic stability analysis of the shear-thinning boundary-layer 

flow over a rotating disk. This work was then extended by the 

same authors Griffiths et al. [23] , to compute the neutral curves 

of convective instability (working under the parallel-flow assump- 

tion) and complete agreement was found with their prior asymp- 

totic analysis. These two papers can be considered as the non- 

Newtonian generalisations of Hall [4] and Malik [3] , respectively. 

Griffiths [24] later extends the power-law studies to include the 

Bingham [25] and Carreau [26] models of non-Newtonian viscosity. 

He finds that a generalisation of the von Kármán similarity solu- 

tion is applicable for a variety of different inelastic and viscoplastic 

non-Newtonian models. 

In this current paper we extend the non-Newtonian, inelastic 

study of Griffiths et al. [23] , to the entire BEK family of rotating 

boundary-layer flows. A Chebyshev polynomial method is used to 

consider the effects shear-thinning power-law fluids have on the 

type I and type II modes of instability. 

This paper proceeds as follows: In Section 2 the steady 

boundary-layer flows of the BEK system for fluids with a gov- 

erning viscosity relationship adhering to a power-law model are 

formulated and the profiles presented. A local convective insta- 

bility analysis is presented in Section 3 and the neutral curves, 

critical Reynolds numbers, and convective growth rates are de- 

tailed for a variety of flow parameters. An energy-balance analysis 

is considered in Section 4 and finally our conclusions are drawn 

in Section 5 . All newly-derived equations are presented in detail 

where appropriate in our discussion. 

2. Formulation 

We consider a family of incompressible, shear-thinning 

boundary-layer flows above an infinite rotating disk located 

at z ∗ = 0 . Distinct flows within this family are generated by a dif- 

ferential rotation rate between this solid boundary and a fluid in 

rigid-body rotation (see [14,15] ). Particular cases within the family 

are the Bödewadt, Ekman and von Kármán boundary layer flows 

and we denote the entire family as the BEK system . Both rotating 

components (disk and fluid) are assumed to rotate in the same 

direction and about the same vertical axis with angular velocities 

�∗
D 

and �∗
F 
, respectively. The von Kármán layer appears when the 

fluid is stationary and the disk rotates, i.e., �∗
F = 0 and �∗

D � = 0 ; 

the Ekman layer is such that �∗
F ≈ �∗

D ; and the Bödewadt is such 

that �∗
F 

� = 0 and �∗
D 

= 0 . Furthermore, there exists a continuum of 

cases between these particular examples in which both the disk 

and fluid rotate with different angular velocities. 

The continuity and Navier–Stokes equations in a frame of ref- 

erence rotating with the lower disk, at fixed angular velocity, are 

expressed as follows 

∇ · u 

∗ = 0 , (1a) 

∂ u 

∗

∂t ∗
+ u 

∗ · ∇ u 

∗ + �∗ × ( �∗ × r ∗) + 2 �∗ × u 

∗

= − 1 

ρ∗ ∇p ∗ + 

1 

ρ∗ ∇ · τ∗. (1b) 

Here u 

∗ = (U 

∗, V ∗, W 

∗) are the velocity components in cylin- 

drical polar coordinates ( r ∗, θ , z ∗), t ∗ is time, �∗ = (0 , 0 , �∗) and 

r ∗ = (r ∗, 0 , z ∗) . The fluid density is ρ∗ and p ∗ is the fluid pressure. 

The stress tensor τ∗ for generalised Newtonian models, such as 

the power-law model, is defined by 

τ∗ = μ∗ ˙ γ∗ with μ∗ = μ∗( ˙ γ ∗) , 

where ˙ γ∗ = ∇ u 

∗ + ( ∇ u 

∗) T is the rate of strain tensor and μ∗( ̇ γ ∗) 
is the non-Newtonian viscosity. The magnitude of the rate of strain 

tensor is given by 

˙ γ ∗ = 

√ 

˙ γ∗ : ˙ γ∗

2 

. 

For power-law fluids the governing relationship for μ∗( ̇ γ ∗) is 

μ∗( ˙ γ ∗) = m 

∗( ˙ γ ∗) n −1 , (2) 

where m 

∗ is the consistency coefficient and n is the dimensionless 

power-law index. For n < 1 we have a pseudoplastic fluid where the 

viscosity decreases with increased rate of strain (i.e., shear thin- 

ning). For n > 1 we have a dilitant fluid where the viscosity in- 

creases with increased rate of strain (i.e., shear thickening). The 

classical Newtonian viscosity law is recovered for the particular pa- 

rameter value n = 1 . 

The governing boundary-layer equations are formulated in a 

frame rotating with the lower disk, i.e., at �∗
D 
, and are expressed 

in cylindrical-polar coordinates ( r ∗, θ , z ∗) as 

1 

r ∗
∂(r ∗U 
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r ∗
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