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a b s t r a c t 

In this paper, we present numerical solutions of the Oldroyd-B fluid flowing through a 4:1 planar con- 

traction, for Weissenberg numbers ( Wi ) up to 20. The incompressible viscoelastic flows are simulated 

with the streamfunction–log-conformation methodology. The log-conformation representation guarantees 

by construction the positive-definiteness of the conformation tensor, which circumvents the appearance 

of the high Weissenberg number problem. In addition, the streamfunction flow formulation removes the 

pressure variable from the governing equations and automatically satisfies the mass conservation. Thus, 

the streamfunction–log-conformation reformulation is beneficial for the accuracy and stability of the nu- 

merical algorithm. The resulting governing equations are solved with a high-resolution finite-volume 

method. 

Our numerical results for the reattachment length and the intensity of the recirculation vortices pro- 

duced at the contraction plane are in excellent agreement with the benchmark solutions, available in the 

literature for Weissenberg numbers up to 3. For highly elastic flows, our results agree qualitatively well 

with the data of Afonso et al. (2011) [53]. Our simulations predict the reduction of the vortex size with 

increasing Wi , up to Wi ≈ 5. Moreover, we observe a periodic third vortex growth and annihilation regime 

for Wi ≥ 15. The periodic vortex growth and annihilation is correlated with the accumulation of elastic 

strain in the cavity upstream of the contraction. This elastic instability is viewed as a mechanism that 

releases the elastic energy accumulated in the Oldroyd-B fluid at the fringe of the recirculation vortices. 

The dimensionless period of the third vortex annihilation appears to be independent on the Weissenberg 

number. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Viscoelasticity is a common phenomenon in complex fluids 

such as polymer melts, polymer solutions and colloidal suspen- 

sions, which are widely used in polymer processing (e.g. extru- 

sion, blow molding, injection molding), biofluidics (e.g. vascular 

flows) and microfluidics (e.g. inkjet printing, lab-on-a-chip). The 

viscoelastic constitutive behaviors affect several aspects of the 

flows, including the flow stability, hydraulic resistance, transport 

efficiency, mixing performance, energy dissipation, etc. In addi- 

tion, viscoelasticity can trigger elastic instabilities [1,2] and elastic 

turbulence [3 , 4] , possibly leading to chaotic flow regimes at low 

Reynolds numbers [5] . Thus, the modeling of viscoelastic flows has 

a scientific interest and technical perspectives. However, it is con- 

sidered as a notoriously difficult problem, and to date, numerical 
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simulations are often limited to applications with relatively low 

levels of elasticity, i.e. where the flows are dominated by viscous 

effects. 

Viscoelasticity typically arises from inter- and intra-molecular 

interactions of the polymer chains, and depend on the molecular 

mass and the polymer architecture (e.g. linear chains, branched, 

etc.). The stress relaxation is explained on the microscale level by 

kinetic theories [6–8] for diluted, entangled, and crosslinked poly- 

mer chains. On the macroscale level, various constitutive models 

have been derived from idealization and closure approximations of 

the kinetics models; see for instance [9–11] . The numerical solu- 

tion of the viscoelastic constitutive models is a difficult task, due 

to the numerical instabilities that are prone to occur when elastic 

effects dominate. This issue is referred to in the literature as the 

high Weissenberg number problem [12 , 13] , since the Weissenberg 

number ( Wi ) is a non-dimensional number quantifying the effect 

of elasticity on the flow. At large levels of elasticity, the stress field 

often contains large stress gradients near walls, and stress singu- 

larities at sharp corners and stagnation points [14] . Consequently, 
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viscoelastic flow solvers are prone to introduce numerical er- 

rors because of an under-resolution of the stress field. A turning 

point is reached when the accumulation of numerical errors al- 

ters the positive-definiteness of the conformation tensor (a ten- 

sorial variable representing the internal elastic strain [15] ), lead- 

ing to a non-physical state which produces the loss of evolution 

of the constitutive equation [16] and a numerical divergence [17–

20] . Hulsen et al. [21] explained the numerical divergence by the 

under-estimation of the stress gradients and hence the convective 

stress fluxes, which are numerically compensated by spurious mul- 

tiplication of the stress growth rate. 

A breakthrough in the simulation of viscoelastic flows was in- 

troduced by Fattal and Kupferman [22 , 23] who reformulated the 

differential constitutive models in terms of the matrix-logarithm of 

the conformation tensor—also referred to as the log -conformation 

representation —in order to enforce by construction the positive- 

definiteness of the conformation tensor. The log-conformation rep- 

resentation also linearizes the exponential stress profiles near the 

stress singularity, which is beneficial for the accuracy of the nu- 

merical scheme. Vaithianathan and Collins [24] introduced two 

other transformations, based on the eigendecomposition and the 

Cholesky decomposition of the conformation tensor, which also 

guarantee its positive-definiteness. Another transformation pre- 

serving positive-definiteness, in terms of the square-root of the 

conformation tensor, was independently introduced by Lozinski 

and Owens [25] and Balci et al. [26] . Later, Afonso et al. [27 , 28] 

generalized these methods under the generic kernel-conformation 

transformation. Finally, Saramito [29] and Knechtges et al. [30 , 31] 

recently derived fully-implicit versions of the log-conformation for- 

mulation that do not involve an algebraic decomposition of the ve- 

locity gradient tensor, and which can be linearized and solved with 

the Newton-Raphson method. All these reformulations of the con- 

stitutive models significantly improved the robustness of the nu- 

merical simulations of viscoelastic flow, and made it possible to 

simulate viscoelastic flows dominated by elastic effects, at large Wi . 

Continuity is another constraint that must be satisfied by in- 

compressible fluid flows. Within the classical velocity-pressure 

flow formulation, the continuity constraint applies to the incom- 

pressible flow via the pressure field. In this case, the pressure vari- 

able does not hold any thermodynamic information (in contrast 

to compressible flows), and a pressure (or pressure-correction) 

equation is derived from the coupling of the conservation of the 

mass and momentum. Perot [32] has shown that projection (or 

fractional-step) methods, which decouple the velocity and pres- 

sure calculations, introduce decoupling errors that affect the con- 

servation properties of the numerical schemes. The magnitude of 

the decoupling errors increases with the discrete time-step size 

and the inverse of the Reynolds number [32] . In addition, Xue 

et al. [33] tested several semi-implicit velocity-pressure decoupled 

methods (SIMPLE, SIMPLER, PISO and SIMPLEST), for low-Reynolds 

number viscoelastic flows, and showed that the overall accuracy 

and stability of transient calculations highly depend on the cho- 

sen decoupling algorithm. Their results highlight that the numeri- 

cal stability of velocity-pressure decoupling algorithms imposes re- 

strictions on the time-step size. 

Comminal et al. [34 , 35] combined the log-conformation repre- 

sentation with the streamfunction flow formulation [36–42] , which 

removes the pressure unknown and automatically fulfills the con- 

tinuity constraint. The streamfunction formulation was introduced 

as a change of variable in the vorticity transport equation, in terms 

of a vector potential of the flow, i.e. the streamfunction. The Kutta- 

type condition at the interior boundaries of non-simply connected 

domains is then replaced by constant streamfunction boundary 

values [43] . This reformulation has also been referred to as an 

exact projection method by Chang et al. [43] , and was extended 

to three-dimensional parallel calculations in [44] . The streamfunc- 

tion formulation is formally more accurate than the classical de- 

coupled velocity-pressure methods, since it does not introduce 

any decoupling error [43] . Moreover, the absence of pressure cal- 

culation alleviates the restriction on the time-step size and re- 

moves one loop of iterations from the iterative stress-flow solver. 

Comminal et al. [35] achieved stable calculations of viscoelastic 

flows in the lid-driven cavity, for Courant numbers as high as 64. 

Hence, the streamfunction–log-conformation formulation improved 

the robustness of the numerical simulations, as it enhances at the 

same time accuracy, stability and iterative convergence. 

The 4:1 planar contraction is a geometry that has been used 

to benchmark the performance of various two-dimensional finite- 

volume [45–53] , finite-element [54–67] , spectral-element [68] and 

hybrid [69–72] viscoelastic flow solvers. In the context of the 

finite-volume method, Alves et al. [50] have demonstrated the im- 

portance of using high-resolution schemes, and proposed the CU- 

BISTA interpolation scheme [73] to enhance numerical accuracy 

and iterative convergence of the numerical solutions. In spite of the 

simple geometry, the abrupt planar contraction presents a stress 

singularity at the reentrant (salient) corner, which makes calcula- 

tions at high Weissenberg numbers challenging. The contraction 

flows of viscoelastic liquids have also been the subject of many 

experimental investigations in planar, axisymmetric and three- 

dimensional square-square geometries; see for instance [74–80] . 

The entry flows of Boger fluids generally exhibit a vortex enhance- 

ment behavior with increasing Deborah numbers (which measure 

the ratio between the fluid relaxation and the flow time scales), 

and in some cases, the formation of an elasticity-driven vortex at 

the lip entrance [74 , 78] . Experiments also show that, above a crit- 

ical Deborah number, the viscoelastic entry flows become time- 

dependent, with periodic and aperiodic fluctuations [75 , 76] , and a 

break in the symmetry of the flow [77] . 

This paper presents the numerical solutions of the Oldroyd-B 

fluid flowing inside the 4:1 planar contraction, simulated with the 

finite-volume method and the streamfunction–log-conformation 

formulation. We report data of the reattachment length and the 

vortex intensity of the vortices generated on the contraction plane, 

which we also compare with other results available in the lit- 

erature. The remainder of the paper is organized as follows: 

Section 2 presents the governing equations of the viscoelastic flow, 

as well as the log-conformation representation and the stream- 

function reformulation. Details of the numerical method that is 

used to discretize and solve the governing equations are provided 

in Section 3 . The problem specifications of our simulations of the 

planar contraction flow are given in Section 4 . Numerical results 

are presented and discussed in Section 5 . Finally, the conclusions 

are drawn in the last section of the paper. 

2. Governing equations 

2.1. Standard formulation 

The incompressible viscoelastic flow is governed by the conser- 

vation of mass (continuity equation) and momentum: 

∇ · u = 0 , (1) 

ρ

(
∂u 

∂t 
+ u · ∇u 

)
= −∇p + ∇ · τ, (2) 

where u is the velocity vector, ρ is the density of the fluid, p is the 

isostatic pressure and τ is the constitutive deviatoric stress tensor. 

For the sake of benchmarking the streamfunction–log- 

conformation formulation, we consider the case of a single-mode 

quasi-linear viscoelastic liquid. We employ the Oldroyd-B consti- 

tutive model [81] , which is a continuum model derived from a 
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