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a  b  s  t  r  a  c  t

An  alternative  approach  to simulating  arbitrarily  shaped  particles  submersed  in  viscous  fluid in  two
dimensions  is  proposed,  obtained  by adapting  the  velocity  parameter  of  the  equilibrium  distribution
function  of  a standard  lattice  Boltzmann  method  (LBM).  Comparisons  of  exemplifying  simulations  to
results  in  the literature  validate  the  approach  as  well  as  the convergence  analysis.  Pressure  fluctuations
occurring  in Ladd’s  approach  are  greatly  reduced.  In  comparison  with  the  immersed  boundary  method,
this  approach  does  not  require  cost  intensive  interpolations.  The  parallel  efficiency  of  LBM  is retained.  An
intrinsic  momentum  transfer  is observed  during  particle–particle  collisions.  To demonstrate  the  capa-
bilities  of the approach,  sedimentation  of  particles  of several  shapes  is simulated  despite  omitting  an
explicit  particle  collision  model.
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Introduction

Suspensions play an important role in many technical and even
non-technical processes. Most often, suspensions are polydisperse,
i.e., the solid objects submerged in the fluid differ in size, mass,
or shape. Experiments demonstrate that non-uniformity crucially
influences the dynamics of suspensions, in, for example, sedimen-
tation, mixing processes, and nanomedicine applications, where
non-spherical nanoparticles improve tumour targeting over spher-
ical ones (Park et al., 2008). Many shape-dependent effects, such as
drag, sedimentation behaviour, and even electrical properties of
nanomaterials (Park et al., 2008), are still not fully understood and
therefore in the focus of several research groups. With a deeper
understanding, sophisticated models as well as numerical simula-
tions could deliver highly valuable insights.

A great and so far unsolved challenge is to find an efficient
approach that enables the dynamics of thousands or millions of dif-
ferently and arbitrarily shaped objects to be predicted (Lu, Third,
& Müller, 2015), and thereby be able to calculation the interaction
between objects as well as with the fluid. Unfortunately this incurs
enormous computational costs. The main aim of this paper is to
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contribute a new approach and a numerical scheme towards pro-
viding an accurate as well as efficient simulation for huge numbers
of arbitrarily shaped particles.

To date, most approaches are limited to spherical particles or
to a rather small number of arbitrarily shaped particles. In gen-
eral, two main classes can be distinguished, first, Euler–Euler (EE)
methods where a particle phase is described by a density distribu-
tion and modelled by a convection–diffusion equation and, second,
Euler–Lagrange (EL) methods where the trajectories of a number
of discrete particles are computed according to Newton’s law of
motion. In both cases, usually an incompressible Newtonian fluid
is modelled by the Navier –Stokes equations. Recently proposed EE
models, (e.g., John et al., 2009), are able to perform dynamics simu-
lations for arbitrarily sized particles. The particle phase is modelled
by a convection–diffusion-reaction equation with a balance equa-
tion for the particle size distribution. However, until now, only EE
methods for spherical particle systems have been proposed.

EL methods can further be categorized as fixed-mesh or body-
conformal-mesh methods, like the arbitrary Lagrangian–Eulerian
(ALE) method (Hu, Joseph, & Crochet, 1992). Because of algorithmic
complexity, as well as the high computational cost in re-meshing,
the latter methods are limited to dynamics simulation of only a
few particles. Such EL methods, where the objects are not resolved
in the fluid, specify a drag force model enabling a two-way
coupling of the fluid with the moving object. With it, a dynamics
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Nomenclature

cD Drag coefficient
cL Lift coefficient
dk Porosity
d(x, t) A level-set function related to moving porosity
D Particle (sphere or cylinder) diameter
Dkl Distance between particles k and l
D’i Distance from Xkto the closest point X’k on the wall
D (x, t) Denominator of uB (x, t)
E Particle’s kinetic energy
fi Distribution functions for fluid particles
fi∗ Momentum distribution in the opposite direction of

fi
f eq
i

Equilibrium distribution function
FD Drag force
FL Lift force
Fk Total force acting on particle k
FF
k Hydrodynamic force acting on particle k

Fpp
k

Particle–particle interaction force
Fpw
k

Particle–wall interaction force
Fg
k

Gravitational force acting on particle k
h Step size
Jk Particles’ moment of inertia
Lk Half-edge length of cubical particles
Mk Particles’ mass
N Resolution
N (x, t) Numerator of uB (x, t)
Rk Radius of spherical particles
RP Radius of the circumscribed circle of all particles
rB
i

Physical radius of the i-th particle
Ri Outer radius of a particle
ReP Particle’s Reynolds number
TF
k Torque

ū (x, t) Velocity
ūP
k (t) Particles’ velocity

uF (x, t) Macroscopic fluid velocity
uF Fluid velocity
uB (x, t) Weighted average of the particle velocity
uB Rigid-body velocity
uP
k (x, t) Sum of the translational velocity of the particle mass

centre and the particle angular velocities
ut Tangential velocity on cylinder boundary S
UP Particles’ vertical velocity
vi Discrete mesoscopic velocities
Xk (t) Particles’ position (centre of mass)
yp Particle vertical position
� Relaxation time
� Fluid kinematic viscosity
�F (x, t) Macroscopic fluid density
�P Particle density
εh & ε Smoothing parameter
� & �w Parameters in Eq. (10)

Acronyms
ALE Arbitrary Lagrangian–Eulerian
BGK Bhatnagar–Gross–Krook
DKT Drafting–kissing–tumbling
EE Euler–Euler
EL Euler–Lagrange
EOC Experimental order of convergence
FD Fictitious domain
HLBM Homogenised lattice Boltzmann method
IB Immersed boundary

IBM Immersed boundary method
LBM Lattice Boltzmann method
MLUPS Million lattice site updates per second
MEA  Momentum exchange algorithm

simulation of millions of particles (cf. Tsuji, Yabumoto, & Tanaka,
2008) becomes feasible. However, the objects’ shapes are not
arbitrary but limited to rather simple primitives (cf. Vollmari,
Jasevičius, & Kruggel-Emden, 2016). The most prominent fixed-
mesh methods for fully resolved objects are immersed boundary
(IB) (Peskin, 1972) and fictitious domain (FD) methods (Glowinski,
Pan, Hesla, & Joseph, 1999; Glowinski, Pan, Hesla, Joseph, & Periaux,
2001). Both employ multiple grids, one Eulerian for the fluid phase
and one Lagrangian for each particle. Each Lagrangian grid moves
with its particle’s velocity as the result of the computed hydrody-
namics and other forces (e.g., gravity, collision), and the coupling
back to the fluid is realised by sophisticated forcing schemes. In
contrast to EE, EL methods in principle allow the simulation of
arbitrary shapes (Nakayama & Yamamoto, 2005). However, to
the best of our knowledge, there only exist dynamics simulations
for single non-spherical particles (cf. Aidun, Lu, & Ding, 1998;
Chen, Cai, Xia, Wang, & Chen, 2013; Eshghinejadfard, Abdelsamie,
Janiga, & Thévenin, 2016; Huang, Yang, Krafczyk, & Lu, 2012; Kim
& Choi, 2006; Lv, Tang, & Zhou, 2012; Rosén, Lundell, & Aidun,
2014; Suzuki & Inamuro, 2011; Swaminathan, Mukundakrishnan,
& Hu, 2006; Xia et al., 2009), which may  be because collision
modelling for arbitrary-shaped particles is lacking (Aidun et al.,
1998; Eshghinejadfard et al., 2016), computational demands are
high, and implementations are complex (Swaminathan et al.,
2006).

In recent years, lattice Boltzmann methods (LBMs) have evolved
to be complete with classical tools in solving complex fluid flows
problems. Since 1994 when Ladd used an EL method (Ladd, 1994a,
1994b) and most recently by an EE method (Trunk, Henn, Dörfler,
Nirschl, & Krause, 2016), LBM has been shown to be able to simulate
particulate flows. The explicit scheme, consisting of computation-
ally localised colliding and streaming steps, allows highly efficient
executions on massively parallel platforms (Henn, Thäter, Dörfler,
Nirschl, & Krause, 2016; Krause, ThäTer, & Heuveline, 2013). Sim-
ilar to Ladd, Götz, Feichtinger, Iglberger, Donath, and Rüde (2008)
incorporated spherical particles by a boundary condition method
and demonstrated its capability by simulating up to 150,000 par-
ticles. An IB method was introduced in an LBM context by Feng
and Michaelides (2004, 2005) and further improved by Hu, Yuan,
Shu, Niu, and Li (2014), Niu, Shu, Chew, and Peng (2006), and Wu
and Shu (2009). Shi and Phan-Thien (2005) proposed an FD method
for particulate flows in LBM, which was extended by Nie and Lin
(2010, 2011). They all applied their methods for the dynamics sim-
ulation for spherical particles. Another promising EL fixed-mesh
approach has been proposed by Nakayama and Yamamoto (2005).
The smoothed-profile method models the boundaries of objects
through a continuous transition between fluid and particle veloci-
ties. Later, the idea was introduced into LBM by Jafari, Yamamoto,
and Rahnama (2011). In principle, the method allows the simula-
tion of particles of arbitrary shape. However, until now, it has not
been applied to particles of other shapes.

In this work, an alternative approach is proposed, referred to
as the homogenised lattice Boltzmann method (HLBM). It extends
the porous media model, introduced into LBM by Spaid and Phelan
(1997), towards one which enables the simulation of moving
porous media. We  apply the general HLBM for the simulation of
moving particles of arbitrary shape. To avoid pressure fluctuations,
the local porosity coefficient is used as a smoothing parameter, sim-
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