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a  b  s  t  r  a  c  t

Particle  elongation  is  an  important  factor  affecting  the packing  properties  of  rod-like  particles.  However,
rod-like  particles  can  be easily  bent  into  non-convex  shapes,  in  which  the  effect  of  bending  should  also
be  of  concerned.  To  explore  the  shape  effects  of  elongation  and  bending,  together  with  the  size  and
volume  fraction  effects  on  the  disordered  packing  density  of mixtures  of  non-convex  particles,  binary
and  polydisperse  mixtures  of curved  spherocylinders  are  simulated  employing  sphere  assembly  models
and the relaxation  algorithm  in the  present  work. For  binary  packings  with  the  same  volume,  curves  of
the packing  density  versus  volume  fraction  have  good  linearity,  while  densities  are  plotted  as  a series of
equidistant  curves  under  the  condition  of the  same  shape.  The  independence  of  size  and  shape  effects
on  the  packing  density  is verified  for mixtures  of  curved  spherocylinders.  The  explicit  formula  used  to
predict  the  density  of binary  mixtures,  by  superposing  the two  independent  functions  of  the  size  and
shape  parameters,  is  extended  to  include  a non-convex  shape  factor.  A polydisperse  packing  with  the
shape  factor  following  a uniform  distribution  under  the  condition  of  the  same  volume  is  equivalent  to a
binary  mixture  with certain  components.  The  packing  density  is  thus  predicted  as  the  mean  of  maximum
and  minimum  densities  employing  a weighing  method.

©  2016  Chinese  Society  of  Particuology  and  Institute  of Process  Engineering,  Chinese  Academy  of
Sciences.  Published  by  Elsevier  B.V.  All  rights  reserved.

Introduction

Hard particles and their mixtures jammed into random pack-
ings are ubiquitous in nature and industry. Scientific studies have
used the random packing of hard spheres to model the struc-
tures of glassy, liquid states of matter (Bernal, 1965), colloids
(Chaikin & Lubensky, 2000), granular media (Edwards, 1994), and
heterogeneous materials (Torquato, 2002). Among factors affect-
ing the packing density, the particle size distribution is one of the
most important. Researchers have long carried out experiments
and simulations to explore the optimum particle size distribution
that maximizes the packing density of particles (Cumberland &
Crawford, 1987; Dodds, 1980; Fuller & Thompson, 1907; German,
1989; Gray, 1968; Kolonko, Raschdorf, & Wasch, 2010; Ouchiyama
& Tanaka, 1981, 1986; Rodriguez, Allibert, & Chaix, 1986; Suzuki
& Oshima, 1985; Yang, Miller, & Turcoliver, 1996;). On the basis
of their results, models have been built to explain the mechanism
why a size disparity in a mixture increases the packing density.
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Subsequently, a series of empirical formulas to predict the pack-
ing density of mixtures has been developed, including the simple
packing model (Ouchiyama & Tanaka, 1981), the mixture packing
model (Yu & Standish, 1988), the linear packing model (Yu, Zou,
& Standish, 1996), and the linear-mixture packing model (Yu &
Standish, 1991). These predictive models have been successfully
used in a variety of industrial applications, such as those in metal-
lurgy, transportation, agricultural, and chemical industries.

As the simplest case in polydisperse packings, following the pio-
neering works of Furnas (1931), Westman and Hugill (1930), and
Westman (1936) in the1930s, researchers began to explore the
packing properties of mixtures composed of binary spherical parti-
cles. A series of experiments with various components was carried
out to build the relation describing how the size ratio and volume
fraction affect the packing density. Furnas focused on binary mix-
tures in which particles have a large disparity of sizes. The model he
proposed to predict the packing density has been gradually devel-
oped into the upper bound of a binary packing (Farr & Groot, 2009;
Kyrylyuk, Wouterse, & Philipse, 2010). In contrast, the Westman
equation was  developed from the results of experiments on mix-
tures composed of particles of similar size, which are closer to real
packings. Because predictions made with the Westman equation
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Nomenclature

dv Diameter of the sphere with the same volume as the
non-spherical particle

dp Equivalent packing diameter
G Parameter related to r in the Westman equation
L Length of the tube
N Particle number

[
−
P4] Cubatic order metric

R  Radius of the tube
Ru Curvature distance
r Size ratio
Sp Surface area
Vp Particle volume
V Specific volume
X Volume fraction
w Aspect ratio
� Central angle
� Packing density
  Wadell sphericity

correspond well to the results of experiments, the Westman equa-
tion is more widely used in industrial applications. The Westman
equation (Westman, 1936) uses a quadratic function of the volume
fraction to predict the packing density �, which is:
(
V − VLXL

VS

)2
+ 2G

(
V − VLXL

VS

)  (
V − XL − VSXS

VS

)

+
(
V − XL − VSXS

VS

)2
= 1, (1)

where V is the specific volume defined as 1/�. VL, XL and VS, XS are
the specific volumes and volume fractions of large and small par-
ticles, respectively. For a specific packing, G is a unique parameter
that relates to the size ratio r, which is defined as the ratio of the
diameter of the smaller sphere to that of the larger sphere.

Note that most of these models, built from the results of experi-
ments using a finite number of spherical particles, are applicable
only to the packings of spherical particles. However, real parti-
cles are usually non-spherical, which means the size distribution
is not the only geometric factor that affects the packing density.
The particle shape is not only related to the flowing and fractional
properties of a particulate system. It also affects the behavior of
particles in the storage, transportation, mixing, separation, crystal-
lization, sintering, and fluidization processes of powders. In packing
problems, particles with various shapes exhibit richer character-
istics. For example, the random-close-packing (RCP) density of
identical spheres is around 0.64, which is far below the maximum
random packing density of other basic three-dimensional objects,
such as spherocylinders (Kyrylyuk, van de Haar, Rossi, Wouterse, &
Philipse, 2011; Zhao, Li, Zou, & Yu, 2012), spheroids (Donev et al.,
2004; Man  et al., 2005), Platonic solids (Simth, Fisher, & Alam,
2011; Torquato & Jiao, 2009), superballs (Jiao, Stillinger, & Torquato,
2009), and superellipsoids (Delaney & Cleary, 2010).

For mixtures composed of non-spherical particles with a poly-
disperse size distribution, the problem becomes more complex and
the shape effect should be evaluated. More generally, the shape
parameters are also not identical in a mixture. Analysis can be fur-
ther extended to explore the maximum packing density if both the
shape and size parameters are polydispersely distributed in a mix-
ture. Choosing the proper parameters for the quantification of the
shape disparities of various objects and determining the relation
between the shape parameter and the packing density of non-
spherical particles remain as future work. Researchers have made

great efforts toward solving these problems by producing a series
of empirical formulas (Liu & Ha, 2002; Yu, Standish, & Mclean,
1993; Zou & Yu, 1996a). According to the experimental packings
of spheres, cylinders and disks, Zou and Yu (1996b) proposed the
concept of equivalent packing diameter, which is a function of the
particle volume and the Wadell sphericity (Li et al., 2012). By intro-
ducing the concept of equivalent packing diameter, the mixture
density of non-spherical particles can be predicted from that of
spherical particles with certain size distributions; i.e., the shape dis-
parity is considered to make a similar contribution to the packing
density as the size distribution in spherical systems. The equivalent
packing diameter dp of anon-spherical particle (Zou & Yu, 1996a)
is described as

dp =  −2.785exp
[

2.946
(
  − 1

)]
dv, (2)

where dv is the diameter of the sphere with the same volume as
the aspherical particle, and   is the Wadell sphericity (Li et al.,
2012; Wadell, 1935), defined as the ratio of the surface area of
a sphere having the same volume as the original particle to the
surface area of the particle. This equivalence method has been
verified to be applicable to mixtures of simple and basic three-
dimensional objects; e.g., cylinders and disks (Yu et al., 1993).
However, the empirical formula used to calculate the equivalent
packing diameter was developed from finite experimental results.
The sphericity, describing how round a particle is, is the only shape
parameter that contributes to the empirical formula. For other
complex particle shapes, the application of the equivalent pack-
ing diameter to predict the packing density of mixtures should be
verified. More importantly, the similarities between spherical and
non-spherical particle packings should be guaranteed, at least in
terms of the mechanism that decreases the variation of the specific
volume during a mixing process. The universality of this similarity
is directly related to the question of whether the effect of the parti-
cle shape is equivalent to that of the particle size on the density of
a mixture. This will help us understand whether a corresponding
correlation exists between the macroscopic packing density and
the microscopic configuration because the contacts of neighboring
non-spherical particles are more complex and should be obviously
different from those of spherical particles.

Basis and previous works

Our previous studies on binary mixtures of spherocylinders
revealed that for binary spherocylinders having the same volume,
there is a linear correlation between the packing density and the
volume fraction with both end values determined by the shape
effect. However, for mixtures of binary spherocylinders having the
same shape, the densities can be plotted as a series of equidis-
tance curves with similar varying trends and peak loci. This suggests
that the geometric factors of particle shape and size independently
affect the packing density in packings of binary spherocylinders.
On the basis of this correlation, we  proposed an explicit formula
(Meng, Lu, Li, Zhao, & Li, 2012) that predicts the packing density
(�) of binary spherocylinders as

� (r, w1, w2, Xi) = f (r, Xi) + g (w1, w2, Xi) ,  (3)

where r is the size ratio of the two particles. w1 and w2 are the aspect
ratios of two components. Xi is the volume fraction of component

i, which satisfies the relation
2∑
i=1

Xi = 1 in a binary packing. In the

explicit formula, the packing density of binary spherocylinders is
described as a linear superposition of two  functions of the size ratio
and shape factor without coupling terms, which is considered to
reflect the physical essence of mixtures of non-spherical particle.
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