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a  b  s  t  r  a  c  t

The  discrete  element  method  is  applied  to  investigate  high-temperature  spread  in  compacted  metallic
particle  systems  formed  by high-velocity  compaction.  Assuming  that  heat  transfer  only  occurs  at  contact
zone  between  particles,  a discrete  equation  based  on continuum  mechanics  is proposed  to investigate  the
heat flux. Heat  generated  internally  by friction  between  moving  particles  is  determined  by kinetic  equa-
tions.  For  the  proposed  model,  numerical  results  are obtained  by a particle-flow-code-based  program.
Temperature  profiles  are  determined  at different  locations  and  times.  At a  fixed  location,  the  increase  in
temperature  shows  a  logarithmic  relationship  with  time.  Investigation  of  three  different  systems  indi-
cates  that  the  geometric  distribution  of the particulate  material  is  one  of  the  main  influencing  factors
for  the  heat  conduction  process.  Higher  temperature  is generated  for denser  packing,  and  vice versa.  For
smaller  uniform  particles,  heat  transfers  more  rapidly.
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Introduction

Many studies have modeled heat transfer in powder media.
For systems with small particles, such as nanoparticles, numeri-
cal methods based on the continuous medium hypothesis are well
established (Rahimi-Gorji, Pourmehran, Hatami, & Ganji, 2015).
The Galerkin method, least square method (LSM), and computa-
tional fluid dynamics (CFD) are used to calculate the temperature
distributions of nanofluids and porous media, and they provide
accurate results (Pourmehran, Rahimi-Gorji, Hatami, Sahebi, &
Domairry, 2015; Pourmehran, Rahimi-Gorji, Gorji-Bandpy, & Gorji,
2015). However, modeling heat transfer in systems that con-
tain millimeter-sized solid particles remains a challenge. In some
applications, such as packed beds, interactions between particles
are more complicated, the positions of particles instantaneously
change, and the influences of the friction of particles and surface
roughness cannot be ignored (Chaudhuri, Muzzio, & Tomassone,
2006; Guo & Dai, 2010). High-velocity compaction (HVC) is a new
technique for metal powder formation proposed by Hoaganas AB
Company (Skoglund, 2001). In HVC, metal powders are compressed
by high-energy impact from a hammer at speeds of 2–30 m/s.
Because of the high energies involved in dynamic compaction, the
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process inherently induces adiabatic heating with thermal soften-
ing of the powder and even melting at particle contacts, giving good
pressed compact properties, such as high and homogenous den-
sity, and low elastic after-work (Sethi, Hauck, & German, 2006).
High temperature affects compacted powder systems in various
ways. At high-energy loading, heat can be generated in shear bands
because of friction between particles. Temperature increase in a
sample reduces the maximum tensile stress, thereby effectively
suppressing brittle failure (Zhou, Rosakis, & Ravichandran, 1996).
Therefore, knowing the thermal conductivity of powder materials
is essential to provide theoretical evidence for further investiga-
tion, experiments, and production. The irregular arrangement and
heat dissipation in particles significantly affect the heat transfer
process in powder materials. Only a few good simulation methods
have been developed to investigate the effect of high temperature
on compacted powder systems. Although the temperature can be
obtained by continuum models, the complexity of powder materi-
als leads to difficulties in the calculations.

The discrete element method (DEM) is an effective numeri-
cal approach to simulate the physical behavior of noncontinuous
materials. The method considers interaction of a number of dis-
crete semirigid spherical or polyhedral shaped particles through
contact or noncontact forces, and tracks the movement of each
particle using Newton’s equations. The interactions between par-
ticles are described by specific contact constitutive relations. A
new equilibrium state of the granular system is then obtained by
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Nomenclature

CV specific heat at constant volume (J/(kg K))
E elastic modulus
Fn,Ft normal force and shear force (N)
I principal moment of inertia (kg m2)
ks,kf thermal conductivity (W/(m K))
M resultant moment (N m)
q heat flux vector (W/m2)
T temperature (◦C)
R radius (m)
un normal expansion amount or overlap (m)
� mass density (kg/m3)

 ̨ thermal expansion coefficient (K−1)
� friction coefficient
� Poisson’s ratio

updating the spatial position of each particle by solving the state
equation using the finite difference method. DEM has established
itself as an important simulation technique for engineering applica-
tions involving large granular deformable systems (Cundall, 2002;
Iordanoff, Richard, & Tcherniaieff, 2008). Although thermal and
mechanical systems are completely different, they are regarded as
equivalent systems because of the interchangeable nature of force
(mechanical system) and heat (thermal system) in their diffusional
forms (Hahn, Schwarz, Kröplin, & Wallmersperger, 2011).

The temperature variation of each particle can be tracked by
constructing partial differential equations and then solving them
by Fourier transformation. In addition, the heat flux surface at the
boundary of particles can be described by specific contact relations
(Sun & Chen, 1988; Vafai & Tien, 1981). Many researchers have used
this local modeling method to simulate and determine the thermal
conductivity within a granular material flow containing solid frac-
tions from 0.015 to 0.68 (Argento & Bouvard, 1996; Hunt, 1997).
DEM has also been used to obtain dynamic temperature distribu-
tions of particle systems that are similar to colliding particles in
vacuum, where the heat transfer by convection within the packed-
bed particles can be ignored (Sridhar & Yovanovich, 1994; Vargas
& McCarthy, 2001). Because the fundamental research has already
been performed, some applications have recently been reported
for simulation of transient heat conduction in fluidized particu-
late beds, rotary kilns, and sintering processes (Li & Mason, 2000).
DEM–CFD models have been developed for particle phases and
particle–fluid interactions to predict the effective thermal conduc-
tivity of particulate beds under compression, and a CFD simulation
has been performed to investigate the complex interior structure
of a packed bed (Guo & Dai, 2010; Tsory, Ben-Jacob, Brosh, & Levy,
2013). However, few studies have focused on application of high-
temperature spread in compacted particle systems.

We have previously developed DEM models to account for the
momentum and press force of the particle flow process in HVC
(Wang, Zheng, & Zhou, 2011; Zheng, Wang, Zheng, & Qu, 2010).
In this study, the heat transfer model is coupled into our DEM for-
mulation. A two-dimensional cylindrical bed packed with metallic
particles is simulated. The contact forces between particles are cal-
culated by Hertz’s kinetic theorem (Matuttis, Luding, & Herrmann,
2000).

Mathematical models

Basic hypothesis

Each particle is considered to be a dense disk element. The
density is considered to be uniform. The heat transfer process is

an irreversible process, in which thermal conduction is expected
to dominate and occur through contact areas between particles.
According to Vargas and McCarthy (2001), this assumption is valid
as long as ksa/kfr � 1, where ks is the thermal conductivity of the
powder material, kf is the thermal conductivity of the intersti-
tial medium, a is the contact area between metal particles, which
is given in Eq. (8), and r is the radius of the spherical parti-
cles. The interstitial medium is air, whose thermal conductivity
is 0.023 W/(m K) under steady-state conditions, and the thermal
conductivity of iron-based metallic particles is 80 W/(m K). In this
study, the ratio of ks to kf is always greater than 1.

Governing equations for the heat conduction process

Assuming that changes in strain do not affect the temperature,
the heat conduction equation for a continuum particle is given by

�CV
dT

dt
= −∇ · q + �, (1)

where � is the mass density (kg/m3), CV is the specific heat at con-
stant volume (J/(kg K)), T is the temperature (K), q is the heat flux
vector (W/m2), and � represents the additional heat source (W/m3).
Integrating Eq. (1) over the target volume element gives

V�CV
dT

dt
= −

∫
V

∇ · q dV +
∫

V

� dV. (2)

According to the Gauss divergence theorem, for a closed surface
surrounding the target particle, the volume integral is converted to
the surface integral:∫

V

∇ · q dV =
∫

S

q · n dS, (3)

where n is the unit normal vector with respect to the surface. If the
particles are closely compacted, heat will flow mainly through the
contact areas between particles. Therefore, the surface integral can
be replaced by a summation. Suppose that the number of particles
in contact within the target volume element is N and subscript i
representing the physical quantity of the target particle is omitted,
then∫

S

q · n dS =
N∑

j=1

qijnj �Sij =
N∑

j=1

Qij, (4)

where nj is the unit normal vector of contact surface Sij and Qij is the
heat intensity flowing from the center-line of particle i to particle
j.

Letting QVi =
∫

V� dV and m = V� in Eq. (2) gives the following
heat conduction equations for the discrete system:

miCV
dTi

dt
= −

N∑
j=1

Qij + QVi. (5)

The time derivative is approximated by up-forward differences.
According to Eq. (5), the temperature of the target element at time
t + �t  can be obtained by

Ti(t + �t)  = Ti(t) +
−
∑N

j=1Qij + QVi

miCV
�t,  (6)

where �t  is the time step. By repeating the operation for all of the
particles, the temperatures are updated for successive �t.

Heat exchange relationship for two adjacent particles

The heat intensity at the boundary of particles can be described
by specific contact relations, which account for both granular heat
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