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a  b  s  t  r  a  c  t

This  paper  presents  a simple  but informative  mathematical  model  to describe  the  mixing  of three  dissim-
ilar  components  of  particulate  solids  that  have  the  tendency  to segregate  within  one  another.  A  nonlinear
Markov  chain  model  is proposed  to describe  the  process.  At each  time  step,  the  exchange  of  particulate
solids  between  the  cells  of  the  chain  is  divided  into  two  virtual  stages.  The  first  is pure  stochastic  mixing
accompanied  by  downward  segregation.  Upon  the  completion  of  this  stage,  some  of the  cells appear  to
be  overfilled  with  the mixture,  while  others  appear  to have  a void  space.  The second  stage  is related  to
upward  segregation.  Components  from  the  overfilled  cells  fill the  upper  cells  (those  with  the  void  space)
according  to  the proposed  algorithm.  The  degree  of non-homogeneity  in  the  mixture  (the  standard  devi-
ation)  is calculated  at each  time  step,  which  allows  the  mixing  kinetics  to be described.  The optimum
mixing  time  is  found  to  provide  the  maximum  homogeneity  in  the  ternary  mixture.  However,  this  “com-
mon”  time  differs  from  the  optimum  mixing  times  for  individual  components.  The  model  is verified  using
a lab-scale  vibration  vessel,  and a reasonable  correlation  between  the calculated  and  experimental  data
is  obtained.

© 2016  Chinese  Society  of  Particuology  and  Institute  of Process  Engineering,  Chinese  Academy  of
Sciences.  Published  by  Elsevier  B.V.  All  rights  reserved.

Introduction

The mixing of powders and granular materials is of central
importance for the quality and performance of a wide range of
products. Bridgwater (2010, 2012) emphasized the difficulty of
designing and operating the mixing process, which is largely based
on judgment rather than science. The next stage of development is
to build on the emerging knowledge and methods so as to clarify
the basics for such designs. This will enable the process to be con-
ducted in such a way that the mixing operation can be effectively
controlled. One of the key problems in mixing dissimilar granu-
lar materials is their segregation into one another. The segregation
occurs because of differences in the physical properties of the com-
ponents, such as particle size, density, and shape. The action of
gravity, which is always present in mixing, varies for different sorts
of particles, and also leads to their segregation. With no segregation,
achieving a homogeneous mixture simply involves determining
an adequate mixing time. Very often, it is virtually impossible to
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achieve a homogeneous mixture if segregation occurs. First, the
homogeneity of a mixture increases, reaches a maximum, and then
decreases again. There have been a number of studies, mostly
experimental, on the influence of the segregation effect on mixture
quality (e.g., Jha & Puri, 2010; Jha, Gill, & Puri, 2008; Tang & Puri,
2007). However, the effect of segregation on the mixing kinetics
has received less attention. In particular, it is important to estimate
this effect for the mixing of multi-component dissimilar materials,
when segregation becomes very complex. In a binary mixture, one
component experiences downward segregation and the other com-
ponent experiences upward segregation. In a ternary mixture, an
intermediate component experiences both downward and upward
segregation, and the evolution of its distribution becomes difficult
to predict.

One way to understand the process better is to build a suit-
able mathematical model. Different approaches have been used to
model the mixing of solids. Danckwerts (1953) and Sommer (1996)
developed models based on the forced diffusion equation. These
models played an important role in better understanding the mix-
ing process and estimating the quality of mixtures. However, the
analytical solutions obtained by this approach are mainly of purely
academic interest. This is because of several unrealistic assump-
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Nomenclature

D Dispersion coefficient, m2/s
d Probability of pure stochastic (diffusion) transition
j Cell number counted from the top of the mixture
k Transition number
H Mixture height
m Total number of cells in the chain
P, Pij Matrix of transition probabilities and its entries
S, Sj State vector and its entries
Smax Maximum content of mixture that a cell can contain
t Time, s
V Velocity of segregation, m/s
v Probability (rate) of segregation transition

Greek symbols
�  Standard deviation
�t  Transition duration, s
�x Height of a cell, m

Indices
1 Fine fraction
2 Middle fraction
3 Coarse fraction

tions and the neglect of important physical features of the process.
Kinetic theory was used by Iddir, Arastoopour, and Hrenya (2005) to
model the granular mixture of components with different mechan-
ical properties (size, density, and/or restitution coefficient), where
each particle group was considered as a separate phase with differ-
ent average velocity and granular energy. This model was  applied
to the simple shear flow of binary and ternary mixtures of particles.
However, this model mostly concerned the dynamic properties of
already formed mixtures rather than the kinetics of their formation.
Bridgwater (2010, 2012) used discrete element methods (DEMs)
to solve the main problems of mixing. However, this approach
is very time consuming, which becomes a serious problem when
calculating and comparing numerous process regimes and mixer
configurations.

From the authors’ viewpoint, one tool that is capable of solving
these problems is the theory of Markov chains, which is related to
the process of mixing as it describes the evolution of the state of a
stochastic system. The basic idea of the Markov chain approach con-
sists of separating the operating volume of the mixer into small but
finite zones (cells) and then observing the evolution of the key com-
ponent concentration in these zones at discrete moments in time,
with a small but finite time step between them. This approach was
used by Wang and Fan (1976) to describe the state of a mixture after
passing through a static mixer. However, their work neglected the
evolution of the process parameters, and did not describe the physi-
cal features of the mixing zone. In later studies by these researchers
(Fan, Lai, Akao, Shinoda, & Yoshizawa, 1978; Wang & Fan, 1977), a
model was developed in which transitions were only permitted to
the neighboring cells.

Doucet et al. (2008)Doucet, Hudon, Bertrand, and Chaouki
(2008) attempted to combine the DEM method with Markov chain
theory. They computed the transition probability matrix directly
using results obtained from a discrete element model. This work
shows that, if accurate measurements of the state of the system are
available, the associated Markov operator leads to a good estimate
of the particle dynamics in the mixing system.

The general strategy of applying the theory of Markov chains to
modeling different processes in powder technology was described
by Berthiaux, Mizonov, and Zhukov (2005). It was demonstrated by

Mizonov, Berthiaux, Arlabosse, and Djerroud (2008) that the theory
can be successfully used to model heat and mass transfer between
stochastically moving particulate and gas flows. The results pre-
sented below for the modeling of the kinetics of ternary mixture
formation are mainly based on the approach described by Mizonov,
Berthiaux, and Gatumel (2016), who modeled and optimized the
mixing of two  dissimilar components of particulate solids.

Theory

Suppose that it is necessary to mix  three dissimilar components
of particulate solids, for instance, in a vibration vessel. According
to the strategy of Markov chain modeling, the total height of the
mixture inside the vessel H is divided into m perfectly mixed cells
of height �x  =H/m that can exchange components after agitation.
The transition of a component from a cell can occur because of
pure stochastic (symmetrical) migration of particles, characterized
by the transition probability d, and because of segregation, char-
acterized by the transition probability v. The latter can be directed
downward or upward depending on the component properties and
their environment. The process is observed at discrete moments of
time tk = (k − 1)�t,  where �t  is the time step, or transition dura-
tion, and k is the transition number, which can be interpreted as
the discrete analog of time. The transition probabilities can then be
calculated as follows: d = D�t/�x2, v = V�t/�x, where D is the
dispersion coefficient and V is the dimensional velocity of segre-
gation. For the sake of determinacy, let us suppose that the only
difference between the components is their size, and assign index
numbers of 1–3 to the fine, middle, and coarse fractions, respec-
tively.

At any moment of time tk, the distribution of the volume content
of the fractions over the cells of the chain is presented by the state
column vectors Sk1, Sk2, and Sk3 of size m × 1 containing elements
Sk1j , Sk2j , and Sk3j , where j = 1, . . .,  m is counted from the top of the
mixture.

Let us now assume that the total volume of the fractions inside
each cell Smax remains constant with time, regardless of the com-
position of each fraction inside the cell. Thus, if a cell loses some of
its matter during a time transition, this loss must be immediately
compensated by inflows from neighboring cells. Let us assume that
the value of Smax is equal to the conditional unit. This condition
gives the following constraint

Sk1j + Sk2j + Sk3j = 1, j = 1, . . .,  m (1)

The state vectors Sk1, Sk2, and Sk3 vary with time, i.e., from one tran-
sition to another. Their evolution can be described by the recurrent
matrix equations

Sk+1
1 =Pk1(Sk1, Sk2, Sk3)Sk1, (2)

Sk+1
2 =Pk2(Sk1, Sk2, Sk3)Sk2, (3)

Sk+1
3 =Pk3(Sk1, Sk2, Sk3)Sk3, (4)

where P1, P2, and P3 are matrices of the transition probabilities that
control the process. It is emphasized that the matrices vary from
one time transition to another and depend on the current state of
the mixture. Each matrix is a tridiagonal matrix of size m × m.  In
the general case, they have the following form

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

P11 P12 0 0 ...

P21 P22 P23 0 ...

0 P32 P33 P34 ...

0 0 P43 P44 ...

... ... ... ... ...

⎤
⎥⎥⎥⎥⎥⎥⎦
, (5)
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