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A B S T R A C T

Gas-liquid critical temperature is an important parameter of critical state. Organic compounds are under rapid
phase changes leading to explosions when conditions are changed at their critical states. Therefore, for safety
purposes it is important to study the gas-liquid critical properties for different organic compounds, especially
their critical temperatures. In this work, critical temperatures of 692 organic compounds were collected and
applied to build quantitative structure-property relationship (QSPR) models. Dragon software was used to obtain
their molecular structure information. Methods of multiple linear regression (MLR) and support vector machine
(SVM) were applied to build the models, combined with genetic algorithm method. Between these two models,
the MLR model has better internal robustness and the SVM model has better goodness-of-fit predictive ability.
The results show the developed models have great performance in predicting the gas-liquid critical temperatures.
With these models, critical temperatures of organic compounds can be predicted solely based on their molecular
structures.

1. Introduction

Gas-liquid critical properties are basic thermodynamic parameters,
which include critical temperature, critical pressure, critical volume,
critical density, and so on. These thermodynamic data at critical states
are important for the design of chemical processes near critical regions,
such as petrol fractionation, supercritical extraction and reactions.
These data are also used to calculate other properties and applied to
equations of state. When chemicals are at the gas-liquid critical state
while the condition or environment changes, their phases could be
changed rapidly leading to explosions [1]. Therefore, it is very im-
portant to study the gas-liquid critical properties. Critical temperature
(Tc) is the temperature above which a gas cannot be liquefied. Ex-
perimental determination of their values is a challenge, especially for
large molecules that can decompose at high critical temperatures [2].

Quantitative structure-property relationship (QSPR) studies have
been widely used to predict the desired properties in chemical en-
gineering and safety science [3–5]. In the 1990s, some research work
was done by Leanne et al. [6], Lowell et al. [7], Brian et al. [8] and Alan
et al. [9] to build QSPR models using the same 165 compounds from the
DIPPR (Design Institute for Physical Properties) database to predict

critical temperatures. The major differences among their work were the
descriptors and software used during the model building processes. In
2001, Espinosa et al. [10] used fuzzy ARTMAP-based QSPR to predict
Tc for 530 compounds. The group contribution methods also have been
applied in QSPR models by Nannoolal et al. [11] in 2006 and Ghar-
agheizi et al. [12] in 2011. Some researchers focused on building QSPR
models for a specific group of compounds, such as hydrocarbons [13],
alkyl benzenes [14], 1-alcohol series [15], sulfur compounds [16] and
refrigerants [17]. However, all the above mentioned QSPR models did
not have the application domain (AD) process. In their studies, only
squared correlation coefficient (R2), root mean square error (RMSE)
and average absolute error (AAE) were used to evaluate the fitness of
the obtained models. Organization for Economic Cooperation and De-
velopment (OECD) has published five principles for QSPR studies and it
shows that the model validation and AD processes are important and
necessary [18]. There is one study in 2002 that followed all the ne-
cessary processes to build a reliable QSPR model to predict the Tc va-
lues, but there was no application domain process [19]. In 2016,
Saaidpour performed a complete QSPR study to predict critical tem-
peratures for refrigerant compounds, but not for all types of organic
compounds [20].
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In QSPR studies, the selection of appropriate modeling techniques
that can be applied for model development is one of the key problems.
At present, many different technologies, such as multiple linear re-
gression (MLR), partial least squares (PLS), and support vector machine
(SVM) have been widely used in the QSPR modeling. These techniques
can be used for inspection of linear and nonlinear relations between
interested property and molecular descriptors. The SVM method was
developed from the machine learning community by Vapnik and co-
workers [21,22]. The method was originally developed for classifica-
tion problems. With introduction of ε-insensitive loss function, SVM has
been extended to solve regression problems and has shown great per-
formance in QSPR studies because of its remarkable ability to interpret
the nonlinear relationships between molecular structure and properties.
There have been a lot of applications based on the SVM method in
different research fields, such as least-squares SVM [23–27] and
LibSVM [28].

The performance of SVM for regression depends on the combination
of several parameters. They are kernel function type and its corre-
sponding parameters, capacity parameter C, and ε of ε-insensitive loss
function. C is a regularization parameter that controls the trade-off
between maximizing the margin and minimizing the training error. If C
is too small, then insufficient stress will be placed on fitting the training
data. If C is too large, then the algorithm will over fit the training data.
The optimal value for ε depends on the type of noise present in the data
and the number of resulting support vectors. The bigger ε, the fewer
support vectors are selected [29].

In this work, for the first time a complete and reliable process for
predicting the critical temperature for 692 organic compounds based on
the QSPR methodology was presented. The effective variable selection
method of genetic algorithm (GA) was applied to select an optimal
subset of descriptors that had significant contributions to the overall
critical temperatures; then methods of MLR and SVM were employed to
fit the possible quantitative relationship that existed between selected
descriptors and critical temperatures. In addition, the AD was discussed
in this study.

2. Methods

2.1. Dataset

The dataset consists of 692 organic compounds that include hy-
drocarbons, aldehydes, alcohols, acids, amines, benzenes, sulfur com-
pounds and so on [30]. The values of critical temperature of these
compounds range from 190.6 to 908 K. The dataset is randomly divided
into a training set with 630 compounds and an external prediction set
with 62 compounds. The training set is used for variable selection and
model development, while the external prediction set is used for model
validation.

2.2. Molecular descriptors calculation and selection

There are many software and programs that can be used to calculate
the molecular descriptors, such as Gaussian, CODESSA, and Dragon
[31–33]. Dragon is the most widely used molecular descriptors calcu-
lation program. It can calculate 18 types (1481 kinds) of molecular
descriptors which are shown in Table 1. For a detailed description of
these descriptors, refer to Dragon software user’s guide [34].

In this work, the Dragon program was used to calculate the mole-
cular descriptors and used to search for the best model of the critical
temperature prediction. The calculation was on the basis of the
minimum energy molecular geometries optimized by the HyperChem
software using MM+ molecular mechanics force field and AM1 semi
empirical method [35]. After the calculation of the molecular de-
scriptors, constant and near constant descriptors for all molecules were
eliminated, and pairs with a correlation coefficient greater than 0.95
were considered to be inter-correlated so one of them in each correlated

pair was deleted. Finally, a total set of 641 remaining descriptors was
achieved and used to select an optimal subset of descriptors that have
significant contributions to the critical temperatures.

Genetic algorithm (GA) is a well-accepted method to select the
optimal subset of descriptors. GA is a powerful optimization method to
search for the global optima of solutions. It is developed to mimic some
of the processes observed in natural evolution [29].

2.3. Model building

Two kinds of model building methods, which are MLR and SVM,
were used in this work. MLR process was performed by SPSS, which is
classic statistical analysis software [36]. The SVM model was im-
plemented based on the program Libsvm.

2.4. Model validation

The model validation included three parts: First, the goodness of fit
was presented by R2, RMSE and AAE. Second, the internal robustness
was presented by Leave-Many-Out (LMO) method in this study. The
result of LMO was the cross-validated correlation coefficient which was
Q2
LMO. Third, the external predictive ability was judged by an external

Q2
ext. The detailed calculation processes of Q2

LMO and Q2
ext were in-

troduced in previous work [30,34].

2.5. Application domain

There are many methods of definition of AD, such as range based,
distance based, geometrical based, probability based and so on. One of
the most common definitions is determining the leverage values for
each compound. In this study, the definition of AD was based on the
leverage values which were assumed to follow Gaussian distribution.
The advantage of this method was that the application of the model
could be quantified and presented with the visual graph named the
Williams plot. The leverage value of a compound in the original vari-
able space is defined as
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Where Xi is the descriptor row-vector of the considered compound, X is
the descriptor matrix derived from the training set descriptor values
and n is the number of the compounds. The standard value h* is defined
as

=
+h k

m
* 3( 1)

Where k is the number of model variables and m is the number of the
training set compounds. If the leverage value (h) of a compound is
higher than the standard value (h*), the predicted value of the com-
pound could be regarded as out of the application range of the model
and the predicted result may be not reliable [37,38].

Table 1
The types and numbers of descriptors calculated by Dragon.

Type Number Type Number

Constitutional descriptors 47 Geometrical descriptors 58
Topological descriptors 262 RDF descriptors 150
Molecular walk counts 21 3D-MoRSE descriptors 160
BCUT descriptors 64 WHIM descriptors 99
Galvez topology charge indices 21 GETAWAY descriptors 197
2D autocorrelations 96 Functional groups 121
Charge descriptors 14 Atom-centered fragments 120
Aromaticity indices 4 Empirical descriptors 3
Randic molecular profiles 41 Properties 3
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