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A B S T R A C T

Nucleation-growth models for the kinetic analysis of gas–solid reactions in which nucleation proceeds at the
surface of the particles are reported. The growth of the nuclei is assumed to be anisotropic, i.e. with a very fast
surface rate compared to the bulk one. The nucleation and growth processes are assumed to occur with,
respectively, an areic frequency γ (nb. nuclei m−2 s−1) and an areic reactivity ϕ (mol m−2 s−1), both depending
only on the thermodynamic variables (such as temperature, partial pressures …) established during the reaction.
Depending on the shape of the particles, the direction of growth and the localization of the rate-determining
step, eighteen analytical expressions of kinetic rate are obtained. The importance of particle size is also put in
evidence.

1. Introduction

Among the numerous studies devoted to the kinetic analysis of
solid-gas reactions during the last decades, it appears that the solid
characteristics (in case of powders) are most often neglected at the
expense of the mathematical methods developed for understanding the
mechanism of reaction. Generally the kinetic analysis of the experi-
mental data leads to a so-called “triplet” which consists of the kinetic
model in the form of a f α( ) function, and of the values of the apparent
activation energy noted Ea and of the pre-exponential term noted A, the
rate of reaction being expressed by dα dt Aexp E RT f α/ = (− / ) ( )a . Tables
of f α( ) equations have been published many times [1,2]. These
expressions are generally grouped according to the shape of the
isothermal α-time curves as acceleratory, sigmoid and deceleratory.
Among the rate equations which produce sigmoid α t( ) curves, there are
two groups of laws depending on whether the nucleation proceeds.

For a random bulk nucleation, one can obtain the well-known
Avrami law [3–5] if the nucleus generation is a single-step process, or
the Erofeev law [6] for a multi-steps nucleation based on Mott’s
description of the decomposition of metallic azides [7]. These laws
are derived from assumptions based on an infinite volume of the
“reacting” solid, and on bulk nucleation (which is realistic for nuclea-
tion-growth processes in bulk materials such as crystallization of metals
as described by Kolmogorov [8]).

However, it is a matter of fact that in general gas-solid reactions do
not fulfill these conditions, since nuclei appear at the surface of the
particles as it has been shown for copper sulfate pentahydrate
dehydration [9], aluns dehydration [10] or lithium sulfate monohy-

drate dehydration [11]. Thus how to interpret sigmoïdal α(t) curves
avoiding models based on bulk nucleation?

Garner and Hailes [12] have introduced the concept of branching
nucleation which allows to simulate the first accelerating period of the
reaction. In order to interpret the following decelerating period, Prout
and Tompkins [13] have proposed a mechanism in which the threadlike
nuclei meet which leads to the branches interruption. This mechanism
conducts to the well-known Prout–Tompkins equation (often referred to
as B1). Nevertheless two criticisms could be addressed to this equation:
firstly non-branching nucleation is not taken into account; and secondly
this theory considers that the fractional extent is proportional to the
nuclei number without taking into account the way of development of
the growing nuclei. So even if the Prout-Tompkins equation could
mathematically describe some experimental curves, its physical mean-
ing remains uncertain for application in kinetic analysis (notably due to
its indeterminate nature at small and large values of the extent of
decomposition as previously discussed by Brown [14] and Bohn [15]).

In fact two kinds of models with surface nucleation may be
distinguished according to the way in which the growth proceeds: if
the nuclei develop at the same rate in all directions of space, i.e. the
growth is isotropic, the Mampel’s [16,17] model (based on the over-
lapping theory proposed by Johnson and Mehl [18] and used by
Avrami) must be used, whereas if the growth is anisotropic, i.e. very
fast development of the nuclei along the surface compared to the bulk,
then specific models must be established.

Bianchet and Rigotti [19] proposed a model for decomposition of
solids by taking into account a surface nucleation occurring on plates,
followed by inward growth. Two growth rates are considered (one for
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the normal growth and one for the tangential growth) thus allowing to
consider anisotropic growth (when the tangential component is much
bigger than the normal component) or an isotropic growth. This model
was applied to the dehydration of crystals of 11-aminoundecanoic acid
dihydrate [20]. By fitting to experimental curves obtained in isothermal
and isobaric conditions, the authors were able to determine three
parameters: a nucleation rate (expressed in min−1), a normal growth
rate (with a rate-determining step located at the internal interface) and
a third parameter including in particular the tangential growth rate, a
shape factor and the density of nucleation sites.

More recently, Ogasawara and Koga [21] have combined induction
period, surface reaction and phase boundary reaction to interpret the
thermal dehydration of ferrous oxalate dihydrate.

Models based on surface nucleation and anisotropic growth of the
nuclei have already been used to analyze the kinetics of certain
reactions such as the dehydration of lithium sulfate monohydrate
[22], the reduction of U3O8 on UO2 by H2 [23], the dehydroxylation
of kaolinite [24] and the oxidation of copper nanoparticles [25].
However the general principles of the calculation of the rate of reaction
leading to eighteen laws according to the assumptions done for the rate-
determining step and the direction of growth were never presented. The
present article aims to describe precisely these principles and assump-
tions and to detail the calculation of the rate equations.

2. Assumptions for kinetic modeling

A chemical solid-gas reaction can be written

∑A ν B ν G= +B
j

j j
(1)

where A and B are the solid reactant and the solid product respectively,
Gj are the gas involved in the reaction, νB is the stoichiometric
coefficient related to the solid B (the stoichiometric coefficient related
to the solid A is chosen equal to 1 by convention) and νj are the
algebraic stoichiometric coefficient of the gas j (νj < 0 for the gas
reactant and νj > 0 for the gas product).

The chemical reaction represented by Eq. (1) takes place according

to a mechanism involving a set of elementary steps during which
reactive intermediates are created and\or consumed.

For a given reaction one can define an extent of reaction ξi with
regards to the constituent i. If the reaction occurs in a steady-state
regime, each ξi are equal during the reaction and it is possible to define
the extent of reaction ξ by ξ= ξ1 = ξ2 =⋅⋅⋅= ξi. The absolute speed of
reaction corresponds to the derivative of the extent of reaction with
respect to time, i.e. dξ/dt (expressed in moles of reactant transformed
per unit of time). If the reaction balance is written by giving the
stoichiometric coefficient 1 to the solid reactant phase, and if n0
represents the initial amount of reactant then the reaction can be
characterized by the fractional extent α and by the rate of reaction dα/
dt:

α
n

ξ= 1
0 (2)

dα
dt n

dξ
dt

= 1
0 (3)

The kinetic rate of the reaction will be calculated taking into
account the growth of all the nuclei appeared at the surface of the
particles. Rigorously the rate of the whole reaction corresponds to the
sums of the contributions of both processes of nucleation and growth.
Nevertheless since the nucleation leads in practice to very small
amounts of product, its contribution to the measured reaction rate
can be neglected, thus the rate of the whole reaction will be directly
obtained by calculating the rate of growth.

Nucleation of the new solid phase is supposed to occur homoge-
neously at the surface of the particles and to be followed by a very fast
(quasi instantaneous) two-dimensional growth: once a nucleus appears,
the particle becomes covered with a very thin layer of product. The
growth then proceeds perpendicularly to the surface of the particles.
However all the nuclei do not appear at the particles surfaces at the
same time, which means that during the transformation, the powder is a
mixture of unreacted, partially and fully transformed particles, as it is
shown in Fig. 1 in the case of spherical, cylindrical and plate-like
particles. Each particle is in fact transformed in the same way, but
begins to transform only after a period which corresponds to the time

Nomenclature

Notations

A Pre-exponential factor (s−1)
ΔC Difference of concentration of the diffusing species at both

interfaces (mol m 3)
D Diffusion coefficient (m2 s 1)
Ea Apparent activation energy (J mol 1)
g(r) Mathematical function of the particle size distribution
GD Geometrical factor
h Length of a cylindrical particle (m)
JK Flux of diffusing species k (mol m−2 s−1)
ℓ0 Constant length (= 1 m)
n0 Initial amount of solid reactant (mol)
N0 Initial number of particle
N Number of particles without any nucleus at time t
re External interface radius (m)
rg(τ,t) Rate of growth of one nucleus appearing at time τ (mol

s−1)
ri Internal interface radius (m)
r0 Initial radius of a particle (m)
R Ideal gas constant (= 8.314 J K−1 mol−1)
se External interface surface area (m2)
si Internal interface surface area (m2)
sp(τ,t) Active area (m2)

s0 Initial surface area of a particle (m2)
SL(τ) Free surface for nucleation (m2)
Sm Space function (m2 mol−1)
t Time (s)
tf Time necessary to totally transform one particle (s)
T Temperature (K)
VA Solid reactant volume (m3)
VB Solid product volume (m3)
VmA Molar volume of solid reactant (m3 mol−1)
VmB Molar volume of solid product (m3 mol−1)
V0 Initial solid reactant volume (m3)
x Solid product thickness (m)
z Expansion coefficient
α Fractional extent of the powder
αp Fractional extent of a particle
γ Areic frequency of nucleation (nuclei m−2 s−1)
νB Stoichiometric coefficient related to solid product
νj Stoichiometric coefficient related to gas j
ξ Extent of reaction (mol)
ξi Extent of reaction with regard to the constituent i (mol)
τ Date of appearance of a nucleus (s)
ϕ Areic reactivity of growth (mol m−2 s−1)
ω Reduced rate of reaction
dα/dt Rate of reaction (s−1)
dξ/dt Absolute speed of reaction (mol s−1)
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