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ABSTRACT

A sequential nonlinear interval number programming (SNINP) method is suggested to deal with the
uncertain optimization problems. A general uncertain optimization model is investigated in which the
objective function and constraints are both nonlinear and uncertain. A nonlinear interval number pro-
gramming (NINP) method is employed to transform the uncertain optimization problem into a determin-
istic two-objective optimization problem. Then using the linear combination method and the constraint
penalty function method, a deterministic single-objective and non-constraint optimization problem is
formulated in terms of a penalty function. Combining this NINP method with a modified approximation
management framework (AMF), an efficient SNINP method is then constructed. At each iterative step, an
approximation optimization problem is created based on the Latin Hypercube Design (LHD) and the qua-
dratic polynomial response surface approximation (RSA), and it can then be solved by the NINP method
efficiently. The trust region method is used to manage the sequence of the approximation optimization
problems based on a reliability index. An efficient method is suggested to calculate the actual penalty
function and whereby the reliability index, and based on it the current design space can be updated.

Two numerical examples are presented to demonstrate the effectiveness of the present method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In practical structures, many kinds of uncertainties are always
encountered. Some of them have a physical origin concerned with
loading conditions, material properties, etc., and they cannot be
influenced by the designer. The other uncertainties are caused by
people, and the typical examples are manufacturing and measure-
ment deviations. To obtain a reliable or robust design for uncertain
structures, the effective uncertain optimization methods should be
researched and developed.

The probability method is widely and successfully used to deal
with the uncertainty, and based on it various kinds of stochastic
programming methods are constructed [1-6]. Additionally, the
structural mechanics was combined with the stochastic program-
ming, and whereby several uncertain structural optimization
methods were developed [7-9]. In the above probability-based
optimization methods, random variables are used to model the
uncertain parameters, and the uncertain optimization problem is
generally transformed into a deterministic optimization problem
using the probability statistics theory. Using the probability meth-
od, a great amount of experimental data are always required to
construct the precise probability distributions of the uncertain
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parameters. Unfortunately, for practical engineering problems,
the experimental data available for an uncertain parameter are
often not sufficient, and hence the probability method will encoun-
ter difficulty. However, depending on the engineering experience,
these data are generally enough to identify the bounds of the
uncertain parameter [10]. Thus if an uncertain-but-bounded vari-
able can be used to model the uncertainty of a parameter, the
uncertainty analysis can hence be made much more convenient
and economical.

In the past two decades, the interval method has been obtaining
more and more attentions. Interval represents a closed bounded set
of real numbers, and in interval mathematics [11] it is regarded as
a type of number, namely interval number. Using interval method,
the lower and upper bounds of the uncertain parameters are only
required, unnecessarily knowing their precise probability distribu-
tions. Based on the interval method, another type of uncertain opti-
mization method, namely interval number programming, has come
into being. Tanaka et al. [12], Ishibuchi and Tanaka [13], Rommelf-
anger [14] discussed the linear programming problems with inter-
val coefficients in the objective function. Tong [15] considered the
case in which the coefficients of the objective function and con-
straints are all intervals, and the possible interval of the solution
was obtained by taking the maximum value range and minimum
value range inequalities as constraint conditions. Liu and Da [16]
proposed a fuzzy satisfactory degree of interval number to deal
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with the uncertain constraints. Sengupta et al. [17] studied the lin-
ear interval number programming problem on the basis of a com-
parative study on ordering interval numbers. Zhang et al. [18]
assumed the interval numbers as random variables with uniform
distributions and proposed a possibility degree to solve a multi-cri-
teria decision problem. These works all focus on the linear interval
number programming. However, researches on the nonlinear
interval number programming (NINP) which is really useful for
most of the practical engineering problems are still scarce. On
the best knowledge of the authors, Ref. [19] seems the first attempt
to study the NINP problem. This reference opens the door for NINP
research, however, the uncertain constraints have not been inves-
tigated and furthermore the low optimization efficiency blocks its
practical applications. This work was improved by the Ref. [20] in
which the uncertain constraints were also considered as well as
the uncertain objective function. However, the low efficiency prob-
lem also exists. Jiang et al. [21-23] employed the interval analysis
method to calculate the bounds of the uncertain objective function
and constraints at each optimization step, and whereby developed
an efficient NINP method. However, this method is only effective
for problems, in which the derivatives of the uncertain objective
function or constraints with respect to each uncertain parameter
can be calculated precisely. As a result, so far an NINP method with
high optimization efficiency and wide applicability has still not
been developed. In NINP, we need to transform the uncertain opti-
mization problem into a deterministic one, which is generally a
nesting optimization problem. The outer optimization is used to
optimize the design vector and the inner optimization is used to
compute the intervals of the uncertain objective function and con-
straints, and this generally leads to an extremely low optimization
efficiency for a practical engineering problem. Actually, the low
efficiency problem is the biggest difficulty existing in the current
NINP research, which has been a huge stone to block the develop-
ment and practical application of the NINP methods.

Today’s engineering problems become more and more complex.
Many sophisticated analysis and simulation software solvers are
adopted in design study. These analysis and simulation processes
are usually computation-intensive which take considerable time
and bring high computation cost [24]. A common engineering
practice is to construct a simple and explicit approximation model
to replace the computation-intensive simulation model, and com-
bine the approximation model with a nonlinear optimization oper-
ator to obtain a high computation efficiency. The approximation
optimization methods have been widely studied and an amount
of literatures have been published e.g. [25-30]. In recent years,
there has been a growing interest in the approximation manage-
ment framework (AMF) which combines the approximation opti-
mization with the trust region method. From the viewpoint of
mathematics, the approximation optimization based on trust re-
gion can ensure convergence to a Karuch-Kuhn-Tucker solution
[31,32]. Through the researches on AMF [31-35], two prominent
merits of AMF can be found. One is the high optimization efficiency
brought by the approximation models, and the other is the adap-
tive improvement of the optimization precision brought by the
trust region method. Thus, it seems promising and inspiring to
introduce the AMF into NINP and hence construct an efficient
uncertain optimization method. However, all of the above AMFs
were developed for deterministic optimization problems. In NINP
problems, influences of the uncertain parameters must be consid-
ered, and therefore construction of the approximation models and
the approximation model management will be much more com-
plex and difficultly treated than deterministic problems. Therefore,
a significant modification for the AMF is absolutely necessary to
meet the special requirements of the NINP problems.

Concentrating on the major problem existing in the current
NINP methods, this paper aims at developing a new NINP method

with high optimization efficiency and wide applicability. The fol-
lowing text consists of four major parts. The first part is the state-
ment of the problem, in which an uncertain optimization model is
given and introduced. In the second part, an NINP method is used
to transform the uncertain optimization problem into a determin-
istic optimization problem. This part is based on the authors’ pre-
vious work [20,23]. In the third part, a modified AMF is combined
with the NINP method, and hence an efficient sequential nonlin-
ear interval number programming (SNINP) method is constructed.
A sequence of approximation optimization problems are gener-
ated under the management of the trust region method, and at
each iterate the approximation models are constructed for the
uncertain objective function and constraints based on the Latin
Hypercube Design (LHD) and the quadratic polynomial response
surface approximation (RSA). Each approximation optimization
problem is solved through the nesting optimization of an inter-
generation projection genetic algorithm (IP-GA) [36,37]. An effi-
cient method is provided to compute the actual penalty function
and whereby the reliability index, based on which the current de-
sign space can be updated. In the forth part, a benchmark test is
analyzed to test the performance of the present method, and then
the present method is also applied to a practical engineering
problem.

2. Statement of the problem
A general structural optimization problem can be formulated as
follows:
min fX)
subject to

gi(X) < by,
xl < X < er

i=1,...,1
(M

where X is an n-dimensional design vector, and X; and X, denote the
allowable minimum and maximum vectors of X, respectively. f and
g; are objective function and the ith constraint, respectively, and in
practical structural analysis they are generally obtained from the
simulation models. [ is the number of the constraints. b; is an allow-
able maximum value of the ith constraint. Supposing that there ex-
its uncertainty in the structure and the interval method is used to
describe the uncertainty, a following uncertain optimization prob-
lem can be formulated:

minf(X,a)

subject to

giX.a) <bi=[br.bf], i=1,...1

aca =@a" geaq=a,qf], i=12,....4q (2)
XI gxgxrv

where a is a g-dimensional uncertain vector, and here f and g are
required to be continuous with respect to a. The uncertainty of a
is modeled by an interval vector a'. The superscripts I, L, and R de-
note interval, lower and upper bounds of interval, respectively. bf is
an allowable interval of the ith uncertain constraint. In this optimi-
zation model, the uncertainty level, namely intervals of the uncer-
tain parameters are assumed to be relatively small. As f and g are
continuous functions of the uncertain parameters, all of the values
of the objective function or each constraint under the possible com-
binations of a will form an interval, instead of a real number. Thus,
Eq. (2) cannot be solved through traditional optimization methods,
in which the objective function and constraints are all deterministic
values at a specific design vector.
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