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a b s t r a c t

Finite element simulations of coupled solid-deformation/fluid-diffusion occurring in earthquake fault
zones often require high-fidelity descriptions of the spatial and temporal variations of excess pore water
pressure. Large-scale calculation of the coupled fault zone process is often inhibited by the high-order
interpolation of the displacement field required to overcome unstable tendencies of the finite elements
in the incompressible and nearly incompressible limit. In this work we utilize a stabilized formulation
in which the balance of mass is augmented with an additional term representing a stabilization to the
incremental change in the pressure field. The stabilized formulation permits equal-order interpolation
for the displacement and pore pressure fields and suppresses pore pressure oscillations in the incom-
pressible and nearly incompressible limit. The technique is implemented with a recently developed crit-
ical state plasticity model to investigate transient fluid-flow/solid-deformation processes arising from
slip weakening of a fault segment. The accompanying transient pore pressure development and dissipa-
tion can be used to predict fault rupture and directivity where fluid flow is an important driving force.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In order to accurately model the behavior of fluid-saturated
geomaterials, it is necessary to account for the strong coupling be-
tween the solid skeleton and pore fluid. This coupling is of partic-
ular interest when studying fault zone processes, and is central to
many open questions about fault behavior. The presence of fluids
might explain why some faults, such as the San Andreas, are weak-
er than expected [1,2]. Increases in pore pressure may tend to
weaken faults by reducing the effective normal stress, and trigger
seismic activity. If the overpressures are too large, however, the
fault could experience stable, rather than unstable, sliding [3].
Dilatancy or compaction within the fault zone will also play a cru-
cial role, as well as the degree to which fluid exchange is allowed to
occur between the fault and its surroundings.

Finite element simulations provide a natural tool for investigat-
ing these processes. To do so, we employ a mixed u=p formulation
to solve for the solid displacements and fluid pressures. In compar-
ison to pure-displacement formulations, however, the mixed
scheme creates additional challenges for the numerical analyst.
In the limit of low permeability or fast loading rates, the pore fluid
can impose near or exact incompressibility on the deformation of
the solid matrix. In the presence of incompressibility constraints,
it is well known that only certain combinations of discrete spaces

for the pressure and displacement interpolation exhibit stable
behavior. Failure to choose a stable pair can lead to poor results,
typically in the form of spurious oscillations in the pressure field
and sub-optimal convergence behavior.

The same restrictions are found in other constrained problems
in solid and fluid mechanics. Classic examples include mixed for-
mulations for Stokes flow, Darcy flow, and incompressible elastic-
ity. The mathematical theory establishing the solvability and
stability characteristics of mixed formulations is well-developed.
The key ingredients are the ellipticity requirement and the famous
Ladyzhenskaya-Babuška-Brezzi (LBB) condition [4,5]. Unfortu-
nately, many seemingly natural interpolation pairs – including
equal-order interpolation for all field variables – do not satisfy
the necessary stability requirements. In practice, most analysts rely
on ‘‘safe” elements such as the Taylor-Hood family, in which the
displacement interpolation is one-order higher than the pressure
interpolation. A variety of more sophisticated stable elements are
also available, for example, [6,7].

From an implementation point of view, it would be appealing to
circumvent the stability restrictions and employ a broader class of
interpolation pairs. Over the years, many stabilization techniques
have been proposed for doing precisely this, most extensively in
the fluid dynamics community. The model equations used to study
these schemes are typically the Stokes or Darcy equations, which
despite their simplicity contain all of the salient features of a con-
strained problem. We mention the early Brezzi-Pitkäranta scheme
[8], the Galerkin Least-Squares (GLS) approach of Hughes et al., [9],
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and the more recent Variational Multiscale Methods [10] – but
many others exist [11–13]. In solid mechanics, a variety of schemes
have also been developed for incompressible and quasi-incom-
pressible elasticity in order to overcome volumetric locking associ-
ated with pure-displacement formulations. For example, Oñate
et al. [14] proposed a formulation based on the concept of Finite
Calculus. Masud and Xia [15,16] developed a formulation for both
linear and nonlinear constitutive models based on a Variational
Multiscale approach. Romero and Bischoff have recently proposed
an interesting method for linear elasticity which involves enriching
the finite element spaces with incompatible bubble functions [17].
Of course, the above schemes are merely a representative sample
of an extensive literature that has developed for each class of
problems.

While it is difficult to classify all stabilization schemes in a uni-
fied framework, most frequently the methods lead to a modified
variational formulation in which additional terms are added to
the mass balance equation, modifying the incompressibility con-
straint in such a way that stability of the mixed formulation is in-
creased while maintaining a convergent method. In this way,
meaningful results can be obtained when using otherwise unstable
elements. The goal of this contribution is to extend the stabiliza-
tion concept to coupled solid-deformation/fluid-diffusion prob-
lems. While stabilized methods are employed frequently in fluid
and solid mechanics problems, their use in coupled geomechanical
problems is limited. Nevertheless, some good work in this direc-
tion has begun. In [18], Wan used the GLS approach to stabilize
both a displacement–pressure and a displacement–pressure–
velocity formulation. In [19,20], Truty and Zimmerman compared
three schemes: one based on the Brezzi-Pitkäranta stabilization
and two based on the GLS approach. They also extended their for-
mulation to account for partial saturations. In [21,22], Pastor et al.
proposed a stabilization scheme for dynamic problems using a
fractional-step algorithm, incorporating the stabilization into the
time-stepping scheme. In each case, the authors demonstrated that
the stabilizations can successfully suppress instabilities and lead to
good-quality solutions. Of course, each scheme has its own short-
comings. For example, the GLS method is based on adding the
residual of the strong form of the governing equations. As such,
second-order derivatives with respect to the displacements appear,
and when using linear interpolation, these terms either vanish or
are poorly approximated. A special technique must generally be
employed to improve the accuracy of these calculations, introduc-
ing additional computational work. See [18], for example, where
Wan develops such a stress recovery technique. The GLS formula-
tions also often lead to a non-symmetric modification of the sys-
tem matrix. While this makes little difference if the original
problem is non-symmetric, it would be appealing to preserve any
symmetry if it does exist. Indeed, a key advantage of the methods
of [15–17] is their symmetry-preserving property, but these
schemes have only been employed for incompressible solids and
have not been extended to coupled solid/fluid formulations. The
Brezzi-Pitkäranta scheme does lead to a symmetric modification
and can be cheaply implemented for equal-order linear interpola-
tions. Unfortunately, the formulation cannot be extended to
stabilize other unstable pairs such as linear-displacement/con-
stant-pressure elements. The fractional-step method is primarily
designed for dynamic problems, and may not be an efficient
approach for quasi-static models. It also leads to a conditionally
stable time-integration scheme even if the underlying algorithm
is implicit, though recent improvements by the authors have sig-
nificantly improved the stability restriction [23].

In this paper, we introduce a new stabilization scheme for cou-
pled geomechanical problems based on the concept of Polynomial-
Pressure-Projections. In this approach, the additional stabilizing
terms use element-local projections of the pressure field to coun-

teract the inherent instabilities in the chosen interpolation pair.
The technique was recently proposed by Dohrmann, Bochev, and
Gunzburger, and has been successfully employed for stabilizing
the Stokes problem [13,24] and Darcy problem [25]. An analysis
of similar pressure projection methods, and a unifying framework
for their analysis, has also been proposed by Burman [26].

In this work we employ pressure projections to address insta-
bilities that arise in the geomechanical problems under consider-
ation. The new stabilization has several appealing features. In
particular, the additional stabilizing terms can be assembled lo-
cally on each element using standard shape function information,
and no specialized subroutines are required. The scheme does
not require the calculation of higher-order derivatives or special
stress-recovery techniques. The method introduces minimal addi-
tional computational work, and can be readily implemented in a
standard finite element code. The scheme also leads to a symmetric
modification of the system matrix, preserving any symmetry that
was inherent in the original variational formulation. The resulting
method thus shares many of the positive features of the Brezzi-Pit-
käranta stabilization, but can be used to stabilized a broader class
of unstable pairs.

The primary motivation for using stabilization is computational
efficiency. As an example, consider two meshes composed of an
equal number of elements. The first mesh employs continuous
biquadratic-displacement/bilinear-pressure quads (Q9P4), while
the second uses bilinear-displacement/bilinear-pressure quads
(Q4P4). Both elements are illustrated in Fig. 1. The first element
possesses 22 degrees of freedom and is known to be stable, while
the second element has 12 degrees of freedom and is known to be
unstable – unless a stabilized formulation is employed. The two
elements are comparable in the sense that they produce the same
order of pressure interpolation. The Q9P4, however, leads to alge-
braic problems with many more degrees of freedom. As the num-
ber of elements in each mesh grows, a simple argument shows that
the total number of unknowns in the two meshes quickly ap-
proaches a ratio of 3:1. If we consider the equivalent three-dimen-
sional situation, this ratio approaches 6 1

4 : 1. The bandwidth of the
sparsity patterns will grow similarly.

Further computational savings can also be associated with the
quadrature rule employed. The Q9P4 element typically requires
3� 3 Gauss-quadrature in order to accurately integrate the qua-
dratic displacement field. In the Q4P4 mesh, we only need 2� 2
quadrature. If we consider an elastoplastic material in which a sig-
nificant level of computation must be performed in the material
subroutine at each Gauss point, the lower-order quadrature rule
will lead to additional efficiency. The equal-order element can also
somewhat simplify the code implementation, particularly when
employing adaptive mesh refinement or a parallel decomposition
of the domain. Finally we note that the introduction of stabilization
terms can often improve the convergence behavior of iterative
solvers. For extremely large problems, the memory-efficiency of
iterative solvers makes them a more attractive choice than sparse
direct solvers. For an extensive discussion of the numerical solu-
tion of algebraic systems of the type considered here, see [27].

Q4P4 Q9P4

displacement node

pressure node

Fig. 1. Example mixed elements, showing the unstable Q4P4 and stable Q9P4.
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