FISEVIER

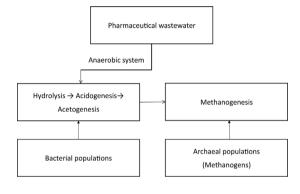
Contents lists available at ScienceDirect

Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Review

Anaerobic treatment of pharmaceutical wastewater: A critical review



BIORESOURCI

Xueqing Shi, Kwok Yii Leong, How Yong Ng*

Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: Anaerobic technology Antibiotics Microorganism Pharmaceutical wastewater

ABSTRACT

Pharmaceutical wastewaters are usually produced by chemical-synthetic process, and thus contain high levels of organic pollutants, biotoxicity and salinity. Anaerobic technology is a viable option for treating pharmaceutical wastewater owing to its advantages of withstanding high organic-loading, less sludge production and lower operating cost as compared with conventional activated sludge process. In this paper, several types of modern anaerobic or hybrid systems were reviewed on their pollutant reduction performance and operating conditions for treating pharmaceutical wastewater. Meanwhile, the typical predominant microbial populations found in anaerobic process treating pharmaceutical wastewater were summarized. Moreover, the environmental impact of antibiotic residues and health risk of spreading of antibiotic resistant genes (ARGs) were also assessed to offer an in-depth understanding of the growing concern on the discharge of treated pharmaceutical effluent.

1. Introduction

Pharmaceutical manufacturing processes can be divided into five categories, namely, fermentation, extraction, chemical synthesis, formulation and packaging (Ince et al., 2002). Among them, chemical synthesis and fermentation processes generate larger amount of wastewater which usually contains high levels of spent solvents, recalcitrant organics, residue pharmaceuticals as well as salts (Chen et al., 2008). Table 1 lists the general characterization of pharmaceutical wastewater that generated from several manufacturing plants according to the existing literature. It was found that although most of the wastewaters contain high amounts of COD, the variation between different manufacturing activities can still be huge, where the raw wastewater COD ranges between 4410 and 40000 mg/L (Cetecioglu et al., 2015; Oktem et al., 2006). In addition, high levels of nitrogenous compounds are commonly found in the pharmaceutical wastewaters, which could be explained by the frequent use of nitrogen-containing organics as raw material for the manufacturing process (Shi et al., 2014). Wastewater-derived dissolved organic nitrogen (DON) is very complex in nature, with potential toxicity that may inhibit biological

E-mail address: howyongng@nus.edu.sg (H.Y. Ng).

http://dx.doi.org/10.1016/j.biortech.2017.08.150

^{*} Corresponding author.

Received 6 July 2017; Received in revised form 22 August 2017; Accepted 23 August 2017 Available online 30 August 2017 0960-8524/ © 2017 Elsevier Ltd. All rights reserved.

Nomenclature			membrane bioreactor			
		MBBR	moving bed biofilm bioreactor			
6-APA	6-Aminopenicillanic acid	NHAR	novel micro-aerobic hydrolysis acidification reactor			
ABR	anaerobic baffled reactor	O_3	ozonation			
AF	anaerobic filter	OFX	ofloxacin			
AFFBR	anaerobic fixed film fixed bed reactor	OLR	organic loading rate (kg COD/m ³ d)			
AMCBR	anaerobic multi-chamber bed reactor	OTC	oxytetracycline			
AnBEMR	anaerobic bio-entrapped membrane reactor	PAD	psychrophilic anaerobic digestion			
AnMBR	anaerobic membrane bioreactor	PAH	polycyclic aromatic hydrocarbon			
ANOVA	analysis of variance	PW	pharmaceutical wastewater			
AnSBR	anaerobic sequencing membrane bioreactor	PWWTP	pharmaceutical wastewater treatment plant			
AOP	advanced oxidation process	SBA	sequential biocatalysts addition			
ARG	antibiotic resistance gene	SBR	sequencing batch reactor			
BASR	biofilm airlift suspension reactor	SMA	specific methanogenic activity			
BCOT	biological contact oxidation tank	SMX	sulfamethoxazole			
CASS	cyclic activated sludge system	SO_4^{2-}	sulphate			
CSTR	continuous stirred tank reactor	SRT	sludge retention time (h or day)			
COD	chemical oxygen demand (mg/L)	TCOD	total chemical oxygen demand (mg/L)			
DO	dissolved oxygen (mg/L)	TDS	total dissolved solids (mg/L)			
DOM	dissolved organic matter (mg/L)	TKN	total kjeldahl nitrogen (mg/L)			
DON	dissolved organic nitrogen (mg/L)	TN	total nitrogen (mg/L)			
EC	electrocoagulation	TP	total phosphorus (mg/L)			
EC ₅₀	half maximal effective concentration	TPAD	two-phase anaerobic digestion			
EGSB	expended granular sludge blanket	TSS	total suspended solids (mg/L)			
FQ	fluoroquinolone	UASB	upflow anaerobic sludge blanket			
H_2O_2	hydrogen peroxide	UASR	upflow anaerobic stage reactor			
HA	hydrolysis/acidification	VFA	volatile fatty acid			
HRT	hydraulic retention time (h or day)	VSS	volatile suspended solids (mg/L)			
IC ₅₀	half maximal inhibitory concentration	WOS	waste organic solvent			
IWS	intertidal wetland sediment	WWTP	waste water treatment plant			

treatment efficiency (Hu et al., 2017). On the other hand, high salinity level could be another major challenge in treating pharmaceutical wastewater. The salinity inhibition on microbial activity is attributed to the unbalanced osmotic potential across cell wall, which in turn cause water loss and eventually kill the cell (Shi et al., 2015).

Moreover, one growing concern in recent years with pharmaceutical

wastewater treatment and discharge is the health risk of emission of antibiotic residues into natural environments, since common biological treatment has limited removal efficiency on antibiotics due to their antimicrobial activity (Aydin, 2016). Given the high organic-strength nature, anaerobic technology is a preferred treatment option for pharmaceutical wastewater considering its advantages such as withstanding

Table 1

Characterization of pharmaceutical wastewaters.

Type of pharmaceutical wastewater	COD (mg/L)	TN/TKN (mg/L)	TP (mg/L)	TSS (mg/L)	TDS (mg/L)	pН	References
Antibiotics waste	15365 ± 1214	1422 ± 173	1763 ± 36.6	388 ± 87	22168 ± 3757	7–8	Ng et al. (2014)
Herbal pharmaceutical factory	5000 ± 80000	135-1250	30-120	900-18800	-	4.2-4.5	Nandy and Kaul (2001)
Chemical synthesis-based pharmaceutical factory	40000 ± 60000	800–900	3–6	0.6–0.7	900-1000	5.5 ± 0.1	Oktem et al. (2006, 2007)
Antibiotic production factory	10000-43000	-	-	120-580	-	-	Değirmentaş and Deveci (2004)
Generated from synthetic pharmaceutical waste	4400	-	-	81.2 ± 33.8		6.8–7.2	Cetecioglu et al. (2015)
Chemical synthesis-based pharmaceutical waste	39000 ± 60000	1010-1575	3–6	800-1000	-	7–8	Ince et al. (2002)
Fermentation wastewater	20.140	2570	420	-	-	6.42	Chen et al. (2014)
Antibiotic waste	16249 ± 714	1612 ± 353	188 ± 29	99 ± 59	29450 ± 1209	7.02	Ng et al. (2015)
Penicillin G pharmaceutical industry	12500 ± 1070	$1250~\pm~25$	38 ± 1.9	871 ± 87	-	7.5 ± 0.3	Rodríguez-Martinez et al. (2005)
Brewery waste pharmaceutical industry	7000 ± 800	364 ± 50	-	-	-	5.2-6.8	Chelliapan et al. (2006, 2011)
Product manufacturing and equipment cleaning	20000	364	-	765	-	7.4	Chen et al. (2011 a)
Antibiotic waste	15476 ± 1614	1472 ± 453	-	-	26450 ± 1732	7.02	Ng et al. (2016)
Antibiotics waste from manufacturing and equipment cleaning industry	16547 ± 1827	$1568~\pm~314$	-	$285~\pm~175$	24899 ± 1758	7.26	Shi et al. (2014)
Bulk drug pharmaceutical industry	13000-15000	120-170	100-120	2800-3000	8500-9000	7.0–7.5	Sreekanth et al. (2009)
Antibiotic pharmaceutical waste	$3000~\pm~450$	98–135	15–20	3400-4100	-	6.99–7.59	Sponza and Demirden (2010)
Chemical synthesis pharmaceutical wastewater	16000 ± 23000	32–36	0.5-22	-	-	3.3-3.7	Kaya et al. (2017)
Bulk drug manufacturing industry	34400 ± 2000	$370~\pm~50$	-	$6250~\pm~200$	15000	7.2 ± 0.3	Deshpande et al. (2010, 2012)
Product manufacturing and equipment cleaning	5000-60000	560-980	51.41-120.4	600-2000	-	4.3-7.2	Chen et al. (2008)
Fermentation-based pharmaceutical wastewater	6800.5	251.8	-	188.3	-	6–7	Xing et al. (2014)

Download English Version:

https://daneshyari.com/en/article/4996757

Download Persian Version:

https://daneshyari.com/article/4996757

Daneshyari.com