Accepted Manuscript

Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance

S. Kavitha, R. Yukesh kannah, J. Rajesh Banu, S. Kaliappan, M. Johnson

PII:	S0960-8524(17)30646-6
DOI:	http://dx.doi.org/10.1016/j.biortech.2017.05.007
Reference:	BITE 18033
To appear in:	Bioresource Technology
Received Date:	22 March 2017
Revised Date:	27 April 2017
Accepted Date:	1 May 2017

Please cite this article as: Kavitha, S., Yukesh kannah, R., Rajesh Banu, J., Kaliappan, S., Johnson, M., Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance, *Bioresource Technology* (2017), doi: http://dx.doi.org/10.1016/j.biortech.2017.05.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Biological disintegration of microalgae for biomethane recovery-prediction
2	of biodegradability and computation of energy balance
3	S. Kavitha ^{a1} , R. Yukesh kannah ^{a2} J. Rajesh Banu ^{a3} *, S. Kaliappan ^b , M. Johnson ^c
4 5 6 7 8 9	^{a1,a2,a3*} Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India ^b Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil, India ^c Centre for Plant Biotechnology, St Xavier's College, Palayamkottai, Tirunelveli, India
10 11	Abstract
12	The present study investigates the synergistic effect of combined bacterial disintegration on
13	mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal
14	biomass lysis, enhanced biodegradability, and methane generation were used as indices to
15	assess efficiency of the disintegration. A maximal dissolvable organics release and algal
16	biomass lysis rate of about 1100, 950 and 800 mg/L and 26, 23 and 18% was achieved in
17	PA+C (protease, amylase + cellulase secreting bacteria), C (cellulase alone) and PA
18	(Protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater
19	production of volatile fatty acids (1000 mg/L) was noted in PA+ C bacterial disintegration of
20	microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal
21	biomass to biomethanation process with higher biodegradability of about 0.27 gCOD/g COD,
22	respectively. The energy balance analysis of this combined bacterial disintegration of
23	microalgal biomass provides surplus positive net energy (1.14 GJ/d) by compensating the
24	input energy requirements.
25	Keywords
26	Microalgal biomass; bacterial disintegration; prediction of biodegradability; biomethanation;
27	energy balance analysis
28	a* Corresponding author: Dr. J. Rajesh Banu, Department of Civil Engineering, Regional
29	Centre of Anna University, Tirunelveli - 627007, India. Tel: 9444215544, Email id:
30	raieshces@gmail.com

1

Download English Version:

https://daneshyari.com/en/article/4996976

Download Persian Version:

https://daneshyari.com/article/4996976

Daneshyari.com