Accepted Manuscript

Effects of different nickel species on autotrophic denitrification driven by thiosulfate in batch tests and a fluidized-bed reactor

Francesco Di Capua, Ivana Milone, Aino-Maija Lakaniemi, Eric D. van Hullebusch, Piet N.L. Lens, Giovanni Esposito

PII:	S0960-8524(17)30589-8
DOI:	http://dx.doi.org/10.1016/j.biortech.2017.04.082
Reference:	BITE 17977
To appear in:	Bioresource Technology
Received Date:	16 February 2017
Revised Date:	18 April 2017
Accepted Date:	21 April 2017

Please cite this article as: Di Capua, F., Milone, I., Lakaniemi, A-M., Hullebusch, D.v., Lens, P.N.L., Esposito, G., Effects of different nickel species on autotrophic denitrification driven by thiosulfate in batch tests and a fluidizedbed reactor, *Bioresource Technology* (2017), doi: http://dx.doi.org/10.1016/j.biortech.2017.04.082

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effects of different nickel species on autotrophic denitrification driven by

thiosulfate in batch tests and a fluidized-bed reactor

Francesco Di Capua^{a,b,*}; Ivana Milone^a; Aino-Maija Lakaniemi^b; Eric D. van

Hullebusch^{d,c}; Piet N.L. Lens^{b,c}; Giovanni Esposito^a.

^a Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio,

via Di Biasio 43, 03043 Cassino (FR), Italy

^b Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box

541, FI-33101 Tampere, Finland

^c IHE Delft Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands

^d Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM,

77454 Marne-la-Vallée, France

^{*}corresponding author

Abstract

Nickel is a common heavy metal and often occurs with nitrate (NO₃⁻) in effluents from mining and metal-finishing industry. The present study investigates the effects of increasing concentrations (5-200 mg Ni/L) of NiEDTA²⁻ and NiCl₂ on autotrophic denitrification with thiosulfate (S₂O₃²⁻) in batch tests and a fluidized-bed reactor (FBR). In batch bioassays, 50 and 100 mg Ni/L of NiEDTA²⁻ only increased the transient accumulation of NO₂⁻, whereas 25-100 mg Ni/L of NiCl₂ inhibited denitrification by 9-19%. NO₃⁻ and NO₂⁻ were completely removed in the FBR at feed NiEDTA²⁻ and NiCl₂ concentrations as high as 100 and 200 mg Ni/L, respectively. PCR-DGGE revealed the dominance of *Thiobacillus denitrificans* and the presence of the sulfate-reducing bacterium *Desulfovibrio putealis* in the FBR microbial community at all feed nickel concentrations investigated. Nickel mass balance, thermodynamic modeling and solid

1

Download English Version:

https://daneshyari.com/en/article/4997229

Download Persian Version:

https://daneshyari.com/article/4997229

Daneshyari.com