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Abstract

Explicit time discretizations of the immersed boundary method are known to require small timesteps to maintain stability. A number
of implicit methods have been introduced to alleviate this restriction to allow for a more efficient method, but many of these methods still
have a stability restriction on the timestep. Furthermore, almost no comparisons have appeared in the literature of the relative compu-
tational costs of the implicit methods and the explicit method. A recent paper [E.P. Newren, A.L. Fogelson, R.D. Guy, R.M. Kirby,
Unconditionally stable discretizations of the immersed boundary equations, J. Comput. Phys. 222 (2007) 702–719.] addressed the con-
fusion over stability of immersed boundary discretizations. This paper identified the cause of instability in previous immersed boundary
discretizations as lack of conservation of energy and introduced a new semi-implicit discretization proven to be unconditionally stable,
i.e., it has bounded discrete energy. The current paper addresses the issue of the efficiency of the implicit solvers. Existing and new methods
to solve implicit immersed boundary equations are described. Systematic comparisons of computational cost are presented for a number
of these solution methods for our stable semi-implicit immersed boundary discretization and an explicit discretization for two distinct test
problems. These comparisons show that two of the implicit methods are at least competitive with the explicit method on one test problem
and outperform it on the other test problem in which the elastic stiffness of the boundary does not dictate the timescale of the fluid
motion.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The immersed boundary (IB) method was introduced by
Peskin in the early 1970s to solve the coupled equations of
motion of a viscous, incompressible fluid and one or more
massless, elastic surfaces or objects immersed in the fluid

[24]. Rather than generating a curve-fitting grid for both
exterior and interior regions of each surface at each time-
step and using these to determine the fluid motion, Peskin
instead employed a uniform Cartesian grid over the entire
domain and discretized the immersed boundaries by a set
of points that are not constrained to lie on the grid. The
key idea that permits this simplified discretization is the
replacement of each suspended object by a suitable contri-
bution to a force density term in the fluid dynamics equa-
tions in order to allow those equations to hold in the
entire domain with no internal boundary conditions.

The IB method was originally developed to model blood
flow in the heart and through heart valves [24,26,27], but
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has since been used in a wide variety of other applications,
particularly in biofluid dynamics problems where complex
geometries and immersed elastic membranes or structures
are present and make traditional computational
approaches difficult. Examples include platelet aggregation
in blood clotting [9,11], swimming of micro-organisms
[9,10], biofilm processes [8], mechanical properties of cells
[1], cochlear dynamics [3], and insect flight [18,19]. We refer
the reader to [25] for a more extensive list of applications.

The immersed interface (II) method was developed by
Leveque and Li to address the low order accuracy found
in the IB method when applied to problems with sharp
interfaces [16]. The II method differs from the IB method
in the spatial discretization method of the singular forces
appearing in the continuous equations of motion. While
we do not address the spatial discretizations involved in
the II method and instead focus on the IB method in this
paper, we do present some discussion of that method since
the two are closely related, in fact hybrids of the two exist,
such as [15].

Explicit timestepping with the IB and II methods leads
to a severe timestep restriction in order to maintain stabil-
ity [9,16,25,29]. This time step restriction is typically much
more stringent than one that would be imposed if explicit
differencing of the advective or diffusive terms [6] were
used. Much effort has been expended attempting to allevi-
ate this severe restriction, including the development of
various implicit and semi-implicit methods [4,9,16,17,
20,30,31].

The use of implicit methods for solving the IB equations
has met with very limited success. Until the recent results in
[22], no implicit IB methods were known to be uncondi-
tionally stable, and the observed instability even of some
of the fully implicit methods was not well understood.
There has also been an almost complete lack of computa-
tional comparisons of implicit methods with the explicit
method. In fact, despite the many papers introducing
implicit methods for solving the IB equations, very few of
them have done any concrete comparisons of the computa-
tional cost of their implicit methods to the explicit method;
two of these papers [22,30] have stated that their implicit
method was slower than the explicit method, while others
have simply overlooked comparing their implicit method
with the explicit method in terms of CPU time. The only
works of which we know to concretely compare computa-
tional cost were that of Stockie and Wetton [29], whose
main focus was an analysis of IB stability, and the work
of Mori and Peskin [20] found in this issue.

The issue of stability of implicit discretizations of the IB
equations was addressed in [22], where the authors showed
that previously suspected and asserted causes of numerical
instability for the IB method were not the actual sources of
instability and identified the cause of instability in previous
implicit IB discretizations as a lack of conservation of
energy of the numerical discretization. In [22], a new
semi-implicit discretization which was proven to be uncon-
ditionally stable in the sense that a natural discrete energy

was bounded. An intriguing consequence of that work is
that linear solvers can be used on stable IB equations. Prior
to the results of [22], it was commonly believed that only
fully implicit discretizations could produce an uncondition-
ally stable immersed boundary method. Fully implicit dis-
cretizations lead to systems of equations that are nonlinear
in the IB point locations, and this nonlinearity reduces the
range of applicable solvers.

In this paper, we seek to address the efficiency of implicit
solvers for the IB method. In particular, we look at meth-
ods that take advantage of the ability to use linear solvers
afforded to us by the new stable semi-implicit discretization
of [22]. Since many implicit solvers have already been intro-
duced in the literature, we begin by cataloguing these meth-
ods and discussing their effectiveness and applicability. We
also introduce several new methods that exploit the linear-
ity of our stable implicit equations, and then compare their
computational cost with that of an explicit method.

In Section 2, we review the immersed boundary equa-
tions of motion and their stable discretization. In Section
3, we catalog and discuss existing and new approaches to
solving implicit IB equations, and in Section 4, we present
detailed comparisons of the relative computational effi-
ciency of some of these implicit solvers and the explicit
method.

2. The immersed boundary method

In the IB method, an Eulerian description is used for the
fluid variables, and a Lagrangian description is used for
each object immersed in the fluid. The boundary is
assumed to be massless, so that all of the force generated
by distortions of the boundary is transmitted directly to
the fluid. An example setup in 2D with a single immersed
boundary curve is shown in Fig. 1. Lowercase letters are
used for Eulerian state variables, while uppercase letters
are used for Lagrangian variables. Thus, Xðs; tÞ is a vector

Fig. 1. Example immersed boundary curve, C, described by the function
Xðs; tÞ, immersed in a fluid-filled region X.
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