
Exploring Metadata in Bug Reports for Bug
Localization

Xiaofei Zhang, Yuan Yao, Yaojing Wang, Feng Xu, Jian Lu
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center for Novel Software Technology and Industrialization

Nanjing 210023, China

xiaofeizhang@smail.nju.edu.cn, y.yao@nju.edu.cn, wyj@smail.nju.edu.cn, {xf, lj}@nju.edu.cn

Abstract—Information retrieval methods have been proposed
to help developers locate related buggy source files for a given
bug report. The basic assumption of these methods is that the bug
description in a bug report should be textually similar to its buggy
source files. However, the metadata (such as the component and
version information) in bug reports is largely ignored by these
methods. In this paper, we propose to explore the metadata for
the bug localization task. In particular, we first apply a generative
model to locate buggy source files based on the bug descriptions,
and then propose to add the available metadata in bug reports
into the localization process. Experimental evaluations on several
software projects indicate that the metadata is useful to improve
the localization accuracy and that the proposed bug localization
method outperforms several existing methods.

Index Terms—Bug localization, bug reports, bug metadata,
supervised topic modeling

I. INTRODUCTION

In many software projects, the bug tracking system has been

introduced to collect and manage bug reports. When a tester

or developer discovers an abnormal behavior of the software,

he or she will be asked to fill in a form provided by the bug

tracking system. The form consists of a bug description and

some bug metadata such as product, component, version, and

hardware (see Fig. 1 as an example). Such a bug tracking sys-

tem is helpful for developers to maintain software quality [1].

Even with a bug tracking system, it is still not an easy task

to locate the buggy source files. For example, a developer who

is assigned to deal with a bug report probably needs to analyze

the information of the bug report, reproduce the abnormal

behavior [2], and perform code review [3] to find the cause.

To save the developers’ effort, a better way is to automatically

recommend a list of potential buggy source files for a given

bug report. This task is referred to as bug localization.

For the bug localization task, information retrieval (IR)

methods have been widely used. The IR methods treat each

bug report as a query and the existing source files in the

code repository as a collection of documents. Then, the bug

localization task becomes a standard IR problem where the

goal is to find textually similar source files for a given bug

report. Under the IR framework, the key difference of the

existing methods is on the similarity computation aspect. For

example, Lukins et al. [4] applied Latent Dirichlet Allocation

(LDA) [5] to learn the latent topics of bug reports and

source files, based on which the similarity can be computed.

Zhou et al. [6] adopted the vector space model (VSM) to

compute similarities and further incorporated the similarities

between bug reports to improve performance. Recently, Lam

et al. [7] and Huo et al. [8] used deep learning techniques to

extract features for bug reports and sources files, and compute

similarities on these features.

One limitation of the existing IR methods is that they tend to

ignore the metadata in the bug reports. On the one hand, most

of the existing IR methods use only the bug descriptions in

the bug reports (e.g., [6], [8]–[10]); even for the few methods

that use metadata (e.g., [11]), they simply treat the metadata

as part of the bug description. On the other hand, metadata

in bug reports is potentially useful for bug localization as

it contains valuable information (such as the component and

version information) in addition to the bug description; for

example, the component metadata may indicate that a subset

of source files are related to the bug report; it has also been

shown that metadata is helpful for other tasks such as bug

report identification [12].

In this paper, we propose to systematically explore the

metadata for the bug localization task. In particular, instead of

following the existing IR methods, we first use a supervised

topic modeling method to locate buggy source files based

on the bug descriptions. The intuition is that compared to

unsupervised IR methods, supervised methods may have better

performance in terms of accurately identifying the relevant

source files. The basic idea to formulate the problem as a

supervised learning problem is by using existing bug fixing

histories as supervision information and use the source file-

names as the supervision labels. Further, we discover that the

naming of source files often follow a hierarchy structure (e.g.,

the full name of a source file is the concatenation of the module

name and the class name) and the substrings of filenames often

appear multiple times in the content of bug report descriptions.

For example, ‘aspectj/weaver/bcel/LazyClassGen.java’ is a

source filename and its substrings like ‘weaver’ and ‘lazyclass’

may frequently appear in the descriptions of the related bug

reports. We propose to incorporate this phenomenon into

topic modeling, and we name this model as L2SS (Label-

to-SubString).

Next, we propose to incorporate several types of metadata

into L2SS. In particular, we consider seven types of metadata

and add each of them into L2SS to see its usefulness. The

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.39

328

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.39

328

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.39

328

metadata consists of component, version, platform, operating

system, priority, severity, and reporter. The basic idea to

incorporate metadata is to model it as the prior probability

for choosing topics. For example, if the component metadata

is ‘UI’, it is probable that the buggy source files are related

to the UI. Such information can be used to lead the search

direction of possible buggy source files for a given bug report.

The model with metadata incorporated is named as L2SS+X

where ‘X’ stands for the corresponding matadata.

To verify the effectiveness of the proposed method, we

conduct experiments on four open source projects with a total

of 36,417 bugs. The results show that the proposed method

outperforms several existing methods in terms of localization

accuracy, and that the metadata is useful to further improve

the localization accuracy. For example, when evaluated on

the JDT (Java development tools) dataset (which contains

5,211 fixed bug reports), one of the proposed method (i.e.,

L2SS+CM) is able to find the related buggy files within the

top 10 recommendations for over 70% bug reports, while the

BugLocator competitor [6] can help 55% bug reports within

the top 10 recommendations. Meanwhile, the proposed method

can be efficiently pre-trained and used at the prediction stage.

The main contributions of this paper include:

1) We propose a supervised topic modeling method L2SS

for the bug localization task. L2SS uses existing bug

fixings and treats the source filenames as the supervision

information. By doing so, L2SS can be applied when

developers only have access to the source filenames.

2) We study the usefulness of several types of metadata

in the bug report, and revise L2SS to incorporate

these metadata (denoted as L2SS+). For example, when

the component metadata is incorporated, we have the

L2SS+CM method.

3) We evaluate the performance of L2SS and L2SS+ on

several real datasets, and the results show the effective-

ness and efficiency of the proposed methods. For exam-

ple, L2SS+CM can achieve up to 16.9% improvement

compared to its best existing competitors.

The remainder of this paper is organized as follows. Sec-

tion II provides some background information. Section III

presents the proposed bug localization method. Section IV

describes the experimental setup and the research questions.

Section V presents the experimental results. Section VI dis-

cusses the threats to validity. Section VII covers related work,

and Section VIII concludes.

II. BACKGROUND

In this section, we introduce some background information.

A. Bug Reports and Metadata

Bug tracking system has been widely used in software

projects. Take the Bugzilla System in Eclipse project as an

example. Fig. 1 shows a real bug report1 (ID:177678) for

AspectJ in Eclipse.

1https://bugs.eclipse.org/bugs/show bug.cgi?id=177678

2017/1/23 Bug 177678 – equality of joinpoints

https://bugs.eclipse.org/bugs/show_bug.cgi?id=177678 1/2

Description

Due to SPAM if you are a *NEW* user and wish to file bugs you will need to contact webmaster at
eclipse dot org to be granted permission. All other users should be unaffected by this change.

First Last Prev Next This bug is not in your last search results.

Bug 177678 - equality of joinpoints

Status: NEW

Product: AspectJ
Component: Runtime

Version: 1.5.3
Hardware: PC Windows XP

Importance: P3 critical (vote)
Target Milestone: ---

Assigned To: aspectj inbox
QA Contact:

URL: http://arno@blogger.de
Whiteboard:

Keywords:

Depends on:
Blocks:

 Show dependency tree

Reported: 2007-03-15 18:41 EDT by Arno
Schmidmeier

Modified: 2007-03-20 07:33 EDT (History)

CC List: 0 users

See Also:

Attachments

Add an attachment (proposed patch, testcase, etc.)

Note
You need to log in before you can comment on or make changes to this bug.

Arno Schmidmeier 2007-03-15 18:41:39 EDT

Fig. 1. A bug report example in the AspectJ project.

We can see from Fig. 1 that a bug report typically contains

description, status, product, component, version, hardware

(platform and operating system), importance (priority and

severity), etc. Except for the bug description, we refer to

the rest information as metadata. The metadata is widely

ignored by existing information retrieval methods, while it may

be helpful for bug localization. For example, the component

metadata may indicate a subset of source files that are related

to the bug; the bug reporter metadata can also play similar

roles as a reporter may be responsible for testing a specific

part of the code repository.

B. Supervised Topic Modeling

Topic modeling (e.g. LDA [5]) has been used to capture the

topical similarities between bug reports and source codes to

locate bugs [4]. To make use of the existing fixing histories

between source files and bug reports, a natural tool is super-

vised topic modeling. In bug localization task, bug reports can

be seen as documents and the related source filenames can be

seen as the labels for the documents. Then, given a bug report,

the goal is to predict its related labels (i.e., source filenames).

Fig. 2 shows an example (LLDA [13]) of supervised topic

modeling. The basic idea of LLDA is as follows. First, each

329329329

Download English Version:

https://daneshyari.com/en/article/4997273

Download Persian Version:

https://daneshyari.com/article/4997273

Daneshyari.com

https://daneshyari.com/en/article/4997273
https://daneshyari.com/article/4997273
https://daneshyari.com

