Accepted Manuscript

Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model

Deng Na, Zhang Awen, Zhang Qiang, He Guansong, Cui Wenqian, Chen Guanyi, Song Chengcai

PII: DOI: Reference:	S0960-8524(17)30344-9 http://dx.doi.org/10.1016/j.biortech.2017.03.072 BITE 17776
To appear in:	Bioresource Technology
Received Date:	10 January 2017
Revised Date:	9 March 2017
Accepted Date:	10 March 2017

Please cite this article as: Na, D., Awen, Z., Qiang, Z., Guansong, H., Wenqian, C., Guanyi, C., Chengcai, S., Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model, *Bioresource Technology* (2017), doi: http://dx.doi.org/10.1016/j.biortech.2017.03.072

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Simulation analysis and ternary diagram of municipal solid waste pyrolysis and
2	gasification based on the equilibrium model
3	Deng Na ^{a,b} , Zhang Awen ^a , Zhang Qiang ^a , He Guansong ^a , Cui Wenqian ^a , Chen Guanyi ^{*c,a} , Song
4	Chengcai ^d
5	^a Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science
6	and Engineering, Tianjin University, Tianjin 300072, China;
7	^b MOE Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin 300350,
8	China
9	^c School of Science, Tibet University, No. 36 Jiangsu Street, Lhasa 850012, Tibet Autonomous Region,
10	PR China
11	^d Coal Gasification Technology Center, ENN Institute, Langfang City, Hebei Province, 065001,
12	China
13	Abstract: A self-sustained municipal solid waste (MSW) pyrolysis-gasification process with
14	self-produced syngas as heat source was proposed and an equilibrium model was established to predict
15	the syngas reuse rate considering variable MSW components. Simulation results indicated that for
16	constant moisture (ash) content, with the increase of ash (moisture) content, syngas reuse rate gradually
17	increased, and reached the maximum 100% when ash (moisture) content was 73.9% (60.4%). Novel
18	ternary diagrams with moisture, ash and combustible as axes were proposed to predict the adaptability of
19	the self-sustained process and syngas reuse rate for waste. For wastes of given components, its position in
20	the ternary diagram can be determined and the syngas reuse rate can be obtained, which will provide
21	guidance for system design. Assuming that the MSW was composed of 100% combustible content,
22	ternary diagram shows that there was a minimum limiting value of 43.8% for the syngas reuse rate in the
23	process.
24	Keywords: MSW; pyrolysis-gasification process; equilibrium model; ternary diagram
25 1. Introduction	
26	With economic growth in the past two decades, the amount of municipal solid
27	waste (MSW) was continuously rising while the world's fossil fuel resources were

 $^{^{*}\} Corresponding\ author:\ Chen\ Guanyi;\ E-mail:\ chenguanyi@utibet.edu.cn;\ chen@tju.edu.cn$

Download English Version:

https://daneshyari.com/en/article/4997401

Download Persian Version:

https://daneshyari.com/article/4997401

Daneshyari.com