Accepted Manuscript

Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production

Yu Hong, Wanru Chen, Xiang Luo, Chengheng Pang, Edward Lester, Tao Wu

PII:	S0960-8524(17)30111-6
DOI.	DITE 17540
Reference:	BITE 17509
To appear in:	Bioresource Technology
Received Date:	27 December 2016
Revised Date:	1 February 2017
Accepted Date:	2 February 2017

Please cite this article as: Hong, Y., Chen, W., Luo, X., Pang, C., Lester, E., Wu, T., Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production, *Bioresource Technology* (2017), doi: http://dx.doi.org/ 10.1016/j.biortech.2017.02.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production
2	Yu Hong ^a , Wanru Chen ^a , Xiang Luo ^{b, c} , Chengheng Pang ^{a,b} , Edward Lester ^d , Tao Wu ^{b,c,*}
3 4 5 6 7 8 9 10	 ^a Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, PR China ^b New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, PR China ^c Municipal Key Laboratory of Clean Energy Conversion Technologies, The University of Nottingham Ningbo China, Ningbo 315100, PR China ^d Department of Chemical and Environmental Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
11	Corresponding author: tao.wu@nottingham.edu.cn
12	Abstract
13	In this study, three different marine biomasses, i.e., microalgae-spirulina, chlorella and
14	macroalgae- porphyra, were pyrolyzed in a laboratory-scale multimode-microwave cavity at 400,
15	550 and 700 °C. Ovalbumin and cellulose were also chosen as model compounds to simulate
16	algae. The influence of heating rate on pyrolysis and the β i curves of different samples under
17	different temperatures were studied in detail. The porphyra was found to be the most reactive and
18	produced the most gaseous fraction (87.1 wt.%) amongst the three algae, which comprised of
19	73.3 vol.% of syngas. It was found that nitrogenated compounds in bio-oil were derived from
20	protein in algae while carbohydrate in algae led to the formation of PAHs. For the production of
21	bio-oil, protein-rich microalgae is favorable compared with porphyra due to their lower amount
22	of PAHs, while porphyra is more suitable for the production of H_2 +CO rich gas product, which is
23	comparable with that of conventional gasification process.
24	Highlights
25	• Carbohydrate in algae led to higher gas yield whilst protein led to higher oil yield.
26	• Microwave-enhanced pyrolysis of porphyra resulted in the highest syngas production.
27	• Microwave-enhanced pyrolysis of spirulina and chlorella favored oil production.

1

Download English Version:

https://daneshyari.com/en/article/4997434

Download Persian Version:

https://daneshyari.com/article/4997434

Daneshyari.com