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Abstract

We construct hp-version interior penalty discontinuous Galerkin finite element methods (DGFEMs) for the biharmonic equation,
including symmetric and nonsymmetric interior penalty discontinuous Galerkin methods and their combinations: semisymmetric meth-
ods. Our main concern is to establish the stability and to develop the a priori error analysis of these methods. We establish error bounds
that are optimal in h and slightly suboptimal in p. The theoretical results are confirmed by numerical experiments.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Conforming finite element methods for the numerical
solution of boundary value problems for the biharmonic
equation require that the approximate solution lie in a
finite-dimensional subspace of the Sobolev space H2(X).
In particular, this necessitates the use of C1 finite elements;
i.e., the basis functions of the finite element space, together
with their first partial derivatives, need to be continuous
over X. Because the construction of such finite element
spaces is fairly involved, H2(X)-conforming finite elements
are rarely used in practical computations. One way to relax
these regularity requirements is to use nonconforming
methods which rely on continuous finite element basis
functions that do not belong to C1ðXÞ (and are, therefore,
not included in H2(X) either). For details, see [13,14] and
references therein.

Other approaches to avoid the use of C1 finite elements
include hybrid and mixed finite element methods. The liter-

ature on mixed methods is extensive, and we refer to the
survey paper [31] and the monograph of Brezzi and Fortin
[11] for general results concerning the construction and the
analysis of these methods. Some applications of mixed and
hybrid methods for the biharmonic problem are presented
in [21,34,19,12].

In recent years discontinuous Galerkin finite element
methods (DGFEMs) have been widely used for the numer-
ical solution of a large range of computational problems
for partial differential equations, including linear and non-
linear hyperbolic problems, convection-dominated diffu-
sion problems and second-order elliptic problems. For an
excellent historical survey of the subject, a summary of var-
ious DGFEMs, and an extensive list of references, we refer
to the special volume [15].

Already in some of the early papers on DGFEMs for
second-order elliptic equations the bilinear form of the
method included interior penalty terms to penalize jumps
across element faces in the numerical solution (cf.
[23,37,2]) and to ensure the coercivity of the bilinear form.
More recently, starting from the same basic premise, sev-
eral authors introduced DGFEMs for second-order elliptic
problems, such as the nonsymmetric interior penalty
DGFEM (NIPG) (cf. [28–30,36,18]), and the symmetric
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interior penalty DGFEM (SIPG) (cf. [2,37]). A discontinu-
ous Galerkin finite element method without interior pen-
alty terms was proposed by Baumann and Oden [8,24]. A
detailed study and a unified error analysis of DGFEMs
for second-order elliptic problems is given in the paper
by Arnold at al. [3].

An interior penalty finite element method for fourth-
order elliptic equations was proposed in [16] and in [6].
More recently this approach was further developed in
[17], where a continuous/discontinuous Galerkin method,
which combines concepts from the theory of continuous
and discontinuous Galerkin methods with ideas from the
theory of stabilized methods, was proposed for fourth-
order elliptic partial differential equations. The methods
developed in that work were based on the symmetric ver-
sion of the Interior Penalty Galerkin method; the Nonsym-
metric Interior Penalty Galerkin Method for fourth-order
elliptic equations was considered in [22].

The purpose of this paper is to extend to higher-order
elliptic equations the hp-version of the interior penalty
DGFEM in symmetric and nonsymmetric formulations.
Our main concern is to establish the stability of these meth-
ods and to derive a priori error bounds. For reasons of clar-
ity of exposition, we consider the simple case of the
Dirichlet problem for the biharmonic equation, although
the basic ideas developed here are readily extendable to
linear elliptic operators of order 2m for any m P 1.

The paper is structured as follows. In Section 2, we
introduce finite element spaces consisting of discontinuous
piecewise polynomials and broken Sobolev spaces. Then
we formulate, in Section 3, the model boundary value
problem for the biharmonic equation; we consider the
broken weak formulation of the problem, show the
consistency of this formulation leading to a Galerkin
orthogonality property, and demonstrate the boundedness
of the associated bilinear form. In Section 4 we present a
family of Discontinuous Galerkin methods for the bihar-
monic equation, which includes NIPG and SIPG methods
and their combinations: the semisymmetric methods
SSIPG1 and SSIPG2. In this section, we also prove the
coercivity of the general bilinear form and deduce from this
result the coercivity of these four methods, for suitable
choices of the penalty parameters. In Section 5 we prove
hp-version a priori error bounds in the energy norm for
the interior penalty Galerkin methods introduced in Sec-
tion 4. First, using the coercivity results from Section 4,
we prove hp-version error bounds for each of NIPG, SIPG,
SSIPG1 and SSIPG2, following the ideas from [26,27].
Then, in the case of the NIPG method, we present an alter-
native hp-version error analysis, inspired by the results of
[18]; thus we obtain the same order of convergence but with
a weaker restriction on the size of the penalty parameters
with respect to the polynomial degree p (cf. [22]). In partic-
ular, we establish error bounds that are optimal in h and
suboptimal in p. Section 6 presents a series of numerical
experiments which confirm the theoretically predicted con-
vergence rates.

2. Finite element spaces

Suppose that X is a bounded, open, convex polyhedral
domain in Rd , d P 2, with boundary oX which is the union
of its open (d � 1)-dimensional faces. Let us consider a
family of triangulations Kh of X, parametrized by h > 0.
That is, for each h > 0, Kh is a partition of X into disjoint
open convex polyhedral element domains K = Kj such that
X ¼

S
K2Kh

K, Ki \ Kj = ; for i 5 j and the intersection
Ki
T

Kj is either empty, a vertex, an edge or a face. We
define a piecewise constant mesh function hK by

hKðxÞ ¼ hK ¼ diamðKÞ; x 2 K; K 2K

and put

h ¼ max
K2Kh

hK :

Let bK be a fixed master element in Rd ; here we shall sup-
pose that bK is the open unit hypercube in Rd . We shall fur-
ther assume that each K 2Kh is an affine image of the
master element bK :

K ¼ F KðbK Þ; K 2Kh:

Let E be the set of all open (d � 1)-dimensional faces of
all elements K 2Kh. We also define a piecewise constant
face-function on E:

hEðxÞ ¼ he ¼ diamðeÞ; x 2 e; e 2 E:

Let us assume that the family of triangulations fKhgh>0 is
shape-regular (cf. Remark 2.2, p. 114, in [10]). We note that
for a shape-regular family there exists a positive constant c

(the shape-regularity constant), independent of h, such that

chK 6 he 6 hK ; 8K 2
[
h>0

Kh 8e 2 @K; ð1Þ

hence, for any element K 2Kh, hK and he are equal to
within a constant.

For a nonnegative integer m, we denote by QmðbK Þ the set
of all tensor-product polynomials of degree m or less in
each coordinate direction. Then, to each K 2Kh we assign
a nonnegative integer pK (the local polynomial degree) and
a nonnegative integer sK (the local Sobolev space index).
Collecting the pK, sK and FK in the vectors p ¼
ðpK : K 2KhÞ, s ¼ ðsK : K 2KhÞ and F ¼ ðF K : K 2KhÞ,
respectively, we introduce the finite element space

SpðX;Kh;FÞ ¼ fu 2 L2ðXÞ : ujK � F K 2 QpK
ðbK Þ 8K 2Khg:

Moreover we define, for the triangulation Kh, the broken
Sobolev space

H sðX;KhÞ ¼ fu 2 L2ðXÞ : ujK 2 HsK ðKÞ 8K 2Khg

equipped with the broken Sobolev norm and seminorm

kuks;Kh
¼

X
K2Kh

kuk2
HsK ðKÞ

 !1
2

; jujs;Kh
¼

X
K2Kh

juj2HsK ðKÞ

 !1
2

:
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