

Available online at www.sciencedirect.com

Computer methods in applied mechanics and engineering

Comput. Methods Appl. Mech. Engrg. 196 (2007) 1890-1904

www.elsevier.com/locate/cma

The Coulomb gauged vector potential formulation for the eddy-current problem in general geometry: Well-posedness and numerical approximation

Oszkár Bíró^a, Alberto Valli^{b,*}

^a Institute for Fundamentals and Theory in Electrical Engineering, Graz University of Technology, Kopernikusgasse 24, A-8010 Graz, Austria ^b Dipartimento di Matematica, Università di Trento, 38050 Povo (Trento), Italy

Received 13 April 2005; received in revised form 11 October 2006; accepted 11 October 2006

Abstract

In this paper we prove that, in a general geometric situation, the Coulomb gauged vector potential formulation of the eddy-current problem for the time-harmonic Maxwell equations is well-posed, i.e., its solution exists and is unique. Moreover, a quasi-optimal error estimate for its finite element approximation with nodal elements is proved. To illustrate the performances of the finite element algorithm, some numerical results are also presented.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Eddy-currents; Vector potentials; Coulomb gauge; Well-posedness; Finite element approximation

1. Introduction

Let us consider a bounded connected open set $\Omega \subset \mathbf{R}^3$, with boundary $\partial \Omega$. The unit outward normal vector on $\partial \Omega$ will be denoted by **n**. We assume that $\overline{\Omega}$ is split into two parts, $\overline{\Omega} = \overline{\Omega_C} \cup \overline{\Omega_I}$, where Ω_C (a non-homogeneous non-isotropic conductor) and Ω_I (a perfect insulator) are open disjoint subsets, such that $\overline{\Omega_C} \subset \Omega$. For the sake of simplicity, we also suppose that Ω_I is connected (the general case can be treated in a similar way, focusing on each connected component of Ω_I , but some modifications are needed when the boundary of a connected component of Ω_I has empty intersection with $\partial \Omega$).

We denote by $\Gamma := \partial \Omega_{I} \cap \partial \Omega_{C}$ the interface between the two subdomains; note that, in the present situation, $\partial \Omega_{C} = \Gamma$ and $\partial \Omega_{I} = \partial \Omega \cup \Gamma$. Moreover, we indicate by Γ_{j} , $j = 1, \ldots, p_{\Gamma}$, the connected components of Γ , and by

 $(\partial \Omega)_t$, $t = 0, 1, \dots, p_{\partial \Omega}$, the connected components of $\partial \Omega$ (in particular, we have denoted by $(\partial \Omega)_0$ the external one).

In this paper we study the time-harmonic *eddy-current* problem, in which the displacement current term $\frac{\partial \mathcal{G}}{\partial t}$ is neglected, and the electric field \mathscr{E} , the magnetic field \mathscr{H} and the applied current density \mathscr{J}_e are of the form

$$\mathscr{E}(t, \mathbf{x}) = \operatorname{Re}[\mathbf{E}(\mathbf{x}) \exp(i\omega t)],$$

$$\mathscr{H}(t, \mathbf{x}) = \operatorname{Re}[\mathbf{H}(\mathbf{x}) \exp(i\omega t)],$$

$$\mathscr{J}_{e}(t, \mathbf{x}) = \operatorname{Re}[\mathbf{J}_{e}(\mathbf{x}) \exp(i\omega t)],$$

where $\omega \neq 0$ is a given angular frequency (see, e.g., [8, p. 219]).

The constitutive relation $\mathscr{B} = \mu \mathscr{H}$ (where μ is the magnetic permeability coefficient) is assumed to hold, as well as the (generalized) Ohm's law $\mathscr{J} = \sigma \mathscr{E} + \mathscr{J}_e$ (where σ is the electric conductivity).

The magnetic permeability μ is assumed to be a symmetric matrix, uniformly positive definite in Ω , with entries in $L^{\infty}(\Omega)$. Since $\Omega_{\rm I}$ is a perfect insulator, we require that $\sigma_{|\Omega_{\rm I}|} \equiv 0$; moreover, as $\Omega_{\rm C}$ is a non-homogeneous non-isotropic conductor, $\sigma_{|\Omega_{\rm C}|}$ is assumed to be a symmetric matrix,

 ^{*} Corresponding author. Tel.: +39 0461 881580; fax: +39 0461 881624.
E-mail addresses: biro@igte.tu-graz.ac.at (O. Bíró), valli@science.
unitn.it (A. Valli).

.. _

. .

uniformly positive definite in $\Omega_{\rm C}$, with entries in $L^{\infty}(\Omega_{\rm C})$. Moreover, the dielectric coefficient $\varepsilon_{\rm I}$, which enters the problem when one has to determine the electric field in $\Omega_{\rm I}$, is assumed to be a symmetric matrix, uniformly positive definite in $\Omega_{\rm I}$, with entries in $L^{\infty}(\Omega_{\rm I})$. Finally, the applied current density \mathscr{J}_e is not assumed to vanish in $\Omega_{\rm C}$, so that also the skin effect in current driven massive conductors can be modelled.

Concerning the boundary condition, we will consider in the *magnetic* boundary value problem, modelling a cavity within an infinitely permeable iron: namely, $\mathbf{H} \times \mathbf{n}$, representing the tangential component of the magnetic field, is assumed to vanish on $\partial \Omega$. The case of the *electric* boundary value problem, in which $\mathbf{E} \times \mathbf{n}$, representing the tangential component of the electric field, is assumed to vanish on $\partial \Omega$, can be treated following a similar approach, but in the sequel we will not dwell on it (its general description can be found, e.g., in [4]).

We will make the following assumptions on the geometry of Ω :

either $\partial \Omega \in C^{1,1}$, or else Ω is a Lipschitz polyhedron; the same assumption holds for $\Omega_{\rm C}$ and $\Omega_{\rm I}$.

(H1)

As a consequence, it can be proved (see e.g., [16,21,5,15,18]) that the space of harmonic vector fields

$$\mathscr{H}_{\mu_{\mathrm{I}}}(\partial\Omega;\Gamma) := \{ \mathbf{v}_{\mathrm{I}} \in (L^{2}(\Omega_{\mathrm{I}}))^{3} | \operatorname{curl} \mathbf{v}_{\mathrm{I}} = \mathbf{0}, \operatorname{div}(\mu_{\mathrm{I}}\mathbf{v}_{\mathrm{I}}) = 0, \\ \mathbf{v}_{\mathrm{I}} \times \mathbf{n} = \mathbf{0} \text{ on } \partial\Omega, \mu_{\mathrm{I}}\mathbf{v}_{\mathrm{I}} \cdot \mathbf{n}_{\mathrm{I}} = 0 \text{ on } \Gamma \}$$

has a finite dimension, larger than $p_{\partial\Omega}$, say $p_{\partial\Omega} + n_{\Gamma}$, and that the space of harmonic vector fields

$$\mathscr{H}_{\varepsilon_{\mathrm{I}}}(\Gamma; \widehat{\circ}\Omega) := \{ \mathbf{v}_{\mathrm{I}} \in (L^{2}(\Omega_{\mathrm{I}}))^{3} | \operatorname{curl} \mathbf{v}_{\mathrm{I}} = \mathbf{0}, \operatorname{div}(\varepsilon_{\mathrm{I}} \mathbf{v}_{\mathrm{I}}) = \mathbf{0}, \\ \mathbf{v}_{\mathrm{I}} \times \mathbf{n}_{\mathrm{I}} = \mathbf{0} \text{ on } \Gamma, \varepsilon_{\mathrm{I}} \mathbf{v}_{\mathrm{I}} \cdot \mathbf{n} = 0 \text{ on } \widehat{\circ}\Omega \}$$

has a finite dimension, larger than $p_{\Gamma} - 1$, say $p_{\Gamma} - 1 + n_{\partial\Omega}$. Moreover

there exist n_{Γ} "cuts" Ξ_l , which are the interior of two-dimensional, mutually disjoint, compact and connected Lipschitz manifolds $\overline{\Xi_l}$ with boundary $\partial \Xi_l$, such that $\Xi_l \subset \Omega_I$ and $\partial \Xi_l \subset \Gamma$, and such that in the open set $\widehat{\Omega_I} := \Omega_I \setminus \bigcup_l \Xi_l$, assumed to be connected, every curl-free vector field with vanishing tangential component on $\partial \Omega$ has a global potential; (1.1) there exist $n_{\partial\Omega}$ "cuts" Σ_k , which are the interior of two-dimensional, mutually disjoint, compact and connected Lipschitz manifolds $\overline{\Sigma_k}$ with boundary $\partial \Sigma_k$, such that $\Sigma_k \subset \Omega_I$ and $\partial \Sigma_k \subset \partial \Omega$, and such that in the open set $\widetilde{\Omega_I} := \Omega_I \setminus \bigcup_k \Sigma_k$, assumed to be connected, every curl-free vector field with vanishing tangential

(1.2)

component on Γ has a global potential.

In particular, n_{Γ} is the number of *singular* (or *non-bound-ing*) cycles in $\overline{\Omega_{I}}$ of first type, namely those cycles on Γ that cannot be represented as $\partial S \setminus \gamma$, S being a surface contained in Ω_{I} and γ a cycle, possibly empty, contained in $\partial \Omega$. Similarly, $n_{\partial\Omega}$ is the number of singular cycles in $\overline{\Omega_{I}}$ of second type, namely, those cycles on $\partial \Omega$ that cannot be represented as $\partial S \setminus \gamma$, S being a surface contained in \mathcal{O}_{I} and γ a cycle, possibly empty, contained in Ω_{I} and γ a cycle, possibly empty, contained in Ω_{I} and γ a cycle, possibly empty, contained in Ω_{I} and γ a cycle, possibly empty, contained in Γ .

Let us assume that the current density $\mathbf{J}_{e} \in (L^{2}(\Omega))^{3}$ satisfies the (necessary) conditions

$$div \mathbf{J}_{e,\mathrm{I}} = 0 \text{ in } \Omega_{\mathrm{I}}, \quad \mathbf{J}_{e,\mathrm{I}} \cdot \mathbf{n} = 0 \text{ on } \partial\Omega,$$

$$\int_{\Gamma_{j}} \mathbf{J}_{e,\mathrm{I}} \cdot \mathbf{n}_{\mathrm{I}} = 0 \quad \forall j = 1, \dots, p_{\Gamma} - 1,$$

$$\int_{\Omega_{\mathrm{I}}} \mathbf{J}_{e,\mathrm{I}} \cdot \boldsymbol{\pi}_{k,\mathrm{I}} = 0 \quad \forall k = 1, \dots, n_{\partial\Omega},$$
 (H2)

where $\pi_{k,I}$ are basis functions of the space $\mathscr{H}_{\varepsilon_{I}}(\Gamma;\partial\Omega)$ that are not gradients. As it will be shown in Section 4, condition (H2)₃ is equivalent to setting the total applied current through Σ_{k} to zero. This is necessary in view of Ampère law, since $\mathbf{H} \times \mathbf{n}$ vanishes on $\partial\Omega$, hence on $\partial\Sigma_{k}$.

(For the ease of the reader, in (H2) and in the sequel we are always denoting the duality pairings as surface integrals; see [8,13,17] for more details on these aspects related to functional analysis and to linear spaces of functions.)

In [4] it has been proved that the complete system of equations describing the eddy-current problem in terms of the magnetic field **H** and the electric field \mathbf{E}_{C} is:

$$\begin{cases} \operatorname{curl} \mathbf{E}_{\mathrm{C}} + i\omega\mu_{\mathrm{C}}\mathbf{H}_{\mathrm{C}} = \mathbf{0} \quad \text{in } \Omega_{\mathrm{C}}, \\ \operatorname{curl} \mathbf{H}_{\mathrm{C}} - \sigma \mathbf{E}_{\mathrm{C}} = \mathbf{J}_{e,\mathrm{C}} \quad \text{in } \Omega_{\mathrm{C}}, \\ \operatorname{curl} \mathbf{H}_{\mathrm{I}} = \mathbf{J}_{e,\mathrm{I}} \quad \text{in } \Omega_{\mathrm{I}}, \\ \operatorname{div}(\mu_{\mathrm{I}}\mathbf{H}_{\mathrm{I}}) = 0 \quad \text{in } \Omega_{\mathrm{I}}, \\ \int_{(\partial\Omega)_{l}} \mu_{\mathrm{I}}\mathbf{H}_{\mathrm{I}} \cdot \mathbf{n} = 0 \quad \forall t = 1, \dots, p_{\partial\Omega}, \\ \int_{\Omega_{\mathrm{I}}} i\omega\mu_{\mathrm{I}}\mathbf{H}_{\mathrm{I}} \cdot \boldsymbol{\rho}_{l,\mathrm{I}} + \int_{\Gamma} (\mathbf{E}_{\mathrm{C}} \times \mathbf{n}_{\mathrm{C}}) \cdot \boldsymbol{\rho}_{l,\mathrm{I}} = 0 \quad \forall l = 1, \dots, n_{\Gamma}, \\ \mathbf{H}_{\mathrm{I}} \times \mathbf{n} = \mathbf{0} \quad \text{on } \partial\Omega, \\ \mu_{\mathrm{I}}\mathbf{H}_{\mathrm{I}} \cdot \mathbf{n}_{\mathrm{I}} + \mu_{\mathrm{C}}\mathbf{H}_{\mathrm{C}} \cdot \mathbf{n}_{\mathrm{C}} = 0 \quad \text{on } \Gamma, \\ \mathbf{H}_{\mathrm{I}} \times \mathbf{n}_{\mathrm{I}} + \mathbf{H}_{\mathrm{C}} \times \mathbf{n}_{\mathrm{C}} = \mathbf{0} \quad \text{on } \Gamma, \end{cases}$$
(1.3)

where $\mathbf{n}_{\rm C} = -\mathbf{n}_{\rm I}$ is the unit outward normal vector on $\partial \Omega_{\rm C} = \Gamma$, we have set $\mathbf{E}_{\rm C} := \mathbf{E}_{|\Omega_{\rm C}|}$ (and similarly for $\Omega_{\rm I}$ and any other restriction of function), and $\rho_{l,\rm I}$ are the basis functions of the space of harmonic fields $\mathscr{H}_{\mu_{\rm I}}(\partial\Omega;\Gamma)$ that are not gradients. The non-local condition (1.3)₆ is needed to ensure that the Faraday law is satisfied on the cutting surfaces Ξ_l (see [4,3]). In particular, in [4] it has been proved that, under the assumptions (H1)–(H2), problem (1.3) has a unique solution.

In the following, we are going to consider problem (1.3) in terms of the Coulomb gauged vector potential formulation. We will prove that this formulation is well-posed, Download English Version:

https://daneshyari.com/en/article/499766

Download Persian Version:

https://daneshyari.com/article/499766

Daneshyari.com