Accepted Manuscript

Closed Nutrient Recycling via Microbial Catabolism in an Eco-Engineered Self Regenerating Mixed Anaerobic Microbiome for Hydrogenotrophic Methanogenesis

Savvas Savvas, Joanne Donnelly, Tim P. Patterson, Richard Dinsdale, Sandra R. Esteves

PII: DOI: Reference:	S0960-8524(16)31722-9 http://dx.doi.org/10.1016/j.biortech.2016.12.052 BITE 17428
To appear in:	Bioresource Technology
Received Date: Revised Date: Accepted Date:	11 November 201611 December 201612 December 2016

Please cite this article as: Savvas, S., Donnelly, J., Patterson, T.P., Dinsdale, R., Esteves, S.R., Closed Nutrient Recycling via Microbial Catabolism in an Eco-Engineered Self Regenerating Mixed Anaerobic Microbiome for Hydrogenotrophic Methanogenesis, *Bioresource Technology* (2016), doi: http://dx.doi.org/10.1016/j.biortech. 2016.12.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Closed Nutrient Recycling via Microbial Catabolism in an Eco-Engineered Self Regenerating Mixed Anaerobic Microbiome for Hydrogenotrophic Methanogenesis

Savvas Savvas^{a,b*}, Joanne Donnelly^{a,b}, Tim P. Patterson^{a,b}, Richard Dinsdale^b and Sandra. R. Esteves^{a,b}

^aWales Centre of Excellence for Anaerobic Digestion, University of South Wales, Pontypridd CF37 1DL, Wales UK.

^bSustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, Wales UK.¹

A novel eco-engineered mixed anaerobic culture was successfully demonstrated for the first time to be capable of continuous regeneration in nutrient limiting conditions. Microbial catabolism has been found to support a closed system of nutrients able to enrich a culture of lithotrophic methanogens and provide microbial cell recycling. After enrichment, the hydrogenotrophic species was the dominating methanogens while a bacterial substratum was responsible for the redistribution of nutrients. q-PCR results indicated that 7% of the total population was responsible for the direct conversion of the gases. The efficiency of H_2/CO_2 conversion to CH_4 reached 100% at a gassing rate of above 60 v/v/d. The pH of the culture media was effectively sustained at optimal levels (pH 7-8) through a buffering system created by the dissolved CO_2 . The novel approach can reduce the process nutrient/metal requirement and enhance the environmental and financial performance of hydrogenotrophic methanogenesis for renewable energy storage.

^{*} Corresponding author: Savvas Savvas (<u>savvas.savvas@southwales.ac.uk</u>)

Download English Version:

https://daneshyari.com/en/article/4997674

Download Persian Version:

https://daneshyari.com/article/4997674

Daneshyari.com