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Abstract

This paper introduces directed graphs on which the evolution of a physical quantity depends only on local neighborhoods. These
graphs are then used to model transfer phenomena occurring under a convective mode or a diffusive mode. The conditions under which
the state associated to such graphs approaches the solution of a diffusion-convection partial differential model are established. An algo-
rithm permitting to determine consistent neighborhoods is described and recognized as a generalization of the finite difference method.
Examples of application are presented in order to illustrate the practical applicability of these concepts.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Transfer phenomena are usually modeled under the
mathematical framework of continuous fields, leading to
partial differential equations. These equations are either
investigated directly by analytical methods or are discret-
ized into a finite set of algebraic relations involving discrete
values in order to proceed to numerical simulations based
on various mathematical approximations (finite differences,
finite volumes, finite elements, boundary elements, etc.).
Taking an alternate path, one may also directly formulate
the laws of evolution for a discrete system and search for
the necessary conditions under which this discrete system
will behave more and more as the continuous one, as the
number of its individual components increases inside a
domain of a given shape. Examples of this approach may
be found in [1] concerning particle flows, in [2] for elastic
deformations, or in [3] for the case of electromagnetism.
Flows governed by Navier–Stokes equations have been
simulated by colliding particles on lattices of nodes [4]
and convergence results have been obtained for lattices
associated with a sufficient degree of rotational symmetry.

Section 2 of the present paper will be devoted to the
description of a set of nodes on which a quantity ui evolves
under the influence of the values uj recorded on the neigh-
boring nodes. Section 3 will introduce the conditions allow-
ing this set to approach more and more closely the
behavior of a continuum as it is made finer and finer inside
a given region of space. Assuming these conditions are ver-
ified, the discrete state approaches in the limit the solution
of a diffusion/convection partial differential equation.
From this point of view, this framework may also be con-
sidered as a means to generalize the finite difference
schemes on a set of nodes freely distributed in a given
domain (see Figs. 8 and 10).

The second part of this work describes a practical way to
use the conditions of consistency in order to set up the
approximating differential systems. Extensive work was
applied previously in the search to properly extend the
kingdom of the finite difference method outside the regions
of orthogonal grids. Early works date back as far as [5] or [6],
and similar attempts appeared from time to time in the lit-
erature as an effort to compete with the ever dominating
finite element method. Jensen [7] used a Taylor expansion
written on a set of user-defined neighboring nodes (‘‘The
word neighbor is loosely used in this context to mean near-

by’’) to replace the partial derivatives by a combination
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of unknown values, but soon realized that the matrices
obtained are generally singular when the neighbors are
selected on a sole distance criterion. In that case, the choice
of neighbors must be modified but ‘‘this feature was not yet
incorporated in the computations’’. In order to alleviate
this difficulty, Perrone and Kao [8] partitioned the space
around the central node into eight sectors in which to select
five neighbors on the basis of distance to the center. This
strategy, although clearly improving on the past, did not
fully succeed as the authors conclude that there were
‘‘two key factors: (a) avoidance of a singularity problem
in matrix A; (b) ability to obtain good derivative approxi-
mations. . .’’. The first general purpose program success-
fully written for irregular grids seems to be the FIDAM
code described in [9] and applied to solve various problems
in mechanics. Let us summarize the work of these pioneers:
on a central node (x0,y0), five unknown derivatives have to
be computed from the values obtained on the others nodes.
A subset of eight or more nodes is selected near the central
node in all four quadrants and is globally called the star.
These nodes are then weighed (the nearer the node the
larger the weight) and the L2 norm of the residual of five
linear equations involving the five unknowns is then mini-
mized. The four key features addressed by subsequent
works on this same subject appear in this paper: a. How
many nodes to include in the stars? (b) How to select these
nodes? (c) What weighting function to use? (d) How to jus-
tify the use of a least-squares approximation of a Taylor
formula? Only the last of these questions has led to a
definitive answer by identifying in this approach a moving
least-squares interpolation method (MLS [10]), related
afterwards to some local variational principles giving way
to the so-called meshless methods [11–13]. Following these
works, the mainstream of research dealt with the varia-
tional framework either as a local finite element method
(partition of unity methods [14]) or as a variation of a
kernel-based approach (e.g. the smoothed particle method
[15]).

However, in the author’s opinion, none of these various
methods (as successful as they may be) can be considered
as a bona fide generalization of this old lady, the finite dif-
ference method, on the basis of at least three strong points.
Firstly, a finite difference solution is not a function but a
set of discrete values (the fact that continuous objects
could be interpolated from this set is irrelevant), and a
strict distinction should be maintained between external
(Taylor expansion) and internal (weak formulation) meth-
ods. Secondly, in a finite difference method, the Taylor
expansion must be exactly verified by the discrete values
up to a predetermined order, and not as best as it can
be. And, last but not least, a true generalization should
result in the usual tight and efficient schemes when applied
to the same orthogonal grids. Let us recall here that four
neighbors (i.e. five points schemes) suffice to approximate
a Laplacian up to the order two (this is not so bad when
compared to the classical serendipity quadrilateral finite
element scheme which needs up to 20 neighbors to achieve

the same order of convergence on the same grid). This is
not the case for any of the preceding methods, some of
them demanding to include up to 40 neighbors in each star
to ensure well-conditioned matrices and convergence of
results, without any regard to the spatial distribution of
nodes.

The description and study of the influence graphs done
in Sections 2 and 3 placed in our hands a tool to recognize
if a graph approximates a continuum consistently or not,
but do not provide a direct way to construct consistent
graphs. In Section 4, an algorithm will be described to
accomplish that task, providing a first set (probably not
unique) of answers to questions (a) and (b). This algo-
rithm does not make use of any weighting function and,
there, question c. finds its extinction. In short, the answer
to (a) and (b) is simply: don’t decide (how many and
where) for the algorithm. Let it find itself. Give it your
own preferences: tight and few populated schemes. These
preferences will be taken into account only when a solu-
tion must be selected from many possibilities. For ortho-
gonal grids, there is no choice: the usual schemes are the
only ones brought out by the computations. The main
features of this generalized finite difference method will
be illustrated in Section 6 that describes three examples
of application in the field of diffusive and convective
transfer.

2. Influence graphs

Let us denote by N = {Pi} a set of N fixed points of Rd .
These points are the nodes of the graph. The location of
node i is given by Xi. A node is connected to some other
nodes (which are called its neighbors) by a set of directed

edges, defined as a couple (Pi,Pj) of nodes. The set of edges
E is a subset of the Cartesian product N · N. The whole
topological graph G is given by the couple (N,E), with
N = card(N) and Ne = card(E). An index p is assigned to
each edge ði!p jÞ. To node Pi is associated the set Ie(i) col-
lecting all the edges issued from i

IeðiÞ ¼ fp j ði!
p

jÞg: ð1Þ

Let be a node i, an edge p 2 Ie(i) and two scalar values
(ui,uj) given on the nodes (Pi,Pj). We introduce the follow-
ing notations (see Fig. 1):

‘p ¼ kXj � Xik; Sp ¼ Xj � Xi

� �
=‘p;

up ¼ uj � ui; ap
i ¼ j: ð2Þ

The vectors Sp are called the directors of the graph G.
The quantity ui evolves under the influence of the neigh-

boring values. Let us view edge p 2 Ie(i) as a sensor contin-
uously reading the value uj. These values are accumulated
by a controller which issues a command Ci to the node i.
This command causes a variation of ui(t) according to
the law li dui/dt = Ci, where li is a positive real num-
ber (the inertia of i) associated to node i. The command
Ci is the sum of three terms: the first term is a local source
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