Accepted Manuscript

Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw

Yi Ding, Bo Du, Xuebing Zhao, J.Y. Zhu, Dehua Liu

PII:	S0960-8524(17)30003-2
DOI:	http://dx.doi.org/10.1016/j.biortech.2016.12.109
Reference:	BITE 17485
To appear in:	Bioresource Technology
Design 1 Deter	10 Normal an 2017
Received Date:	19 November 2016
Revised Date:	29 December 2016
Accepted Date:	30 December 2016

Please cite this article as: Ding, Y., Du, B., Zhao, X., Zhu, J.Y., Liu, D., Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw, *Bioresource Technology* (2017), doi: http://dx.doi.org/10.1016/j.biortech.2016.12.109

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Phosphomolybdic acid and ferric iron as efficient electron mediators for
2	coupling biomass pretreatment to produce bioethanol and electricity
3	generation from wheat straw
4	Yi Ding ^{a,§} , Bo Du ^{a,§} , Xuebing Zhao ^{a, b,*} , J.Y. Zhu ^c , Dehua Liu ^{a, b}
5	^a Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University,
6	Beijing 100084, China.
7	^b Tsinghua Innovation Center in Dongguan, Dongguan 523808, China.
8	^c USDA Forest Service, Forest Products Lab, 1 Gifford Pinchot Dr, Madison, WI 53726, USA
9	[§] Both authors contributed equally to this work.
10	* Corresponding author: Xuebing Zhao, Email: zhaoxb@mail.tsinghua.edu.cn; Tel:
11	+86-10-62772130; Fax: +86-10-62772130
12	Abstract: Phosphomolybdic acid (PMo ₁₂) was used as an electron mediator and proton
13	carrier to mediate biomass pretreatment for ethanol production and electricity generation from
14	wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo_{12} with
15	solubilization of a fraction of hemicelluloses, and the PMo_{12} was simultaneously reduced. In
16	an external liquid flow cell, the reduced PMo_{12} was re-oxidized with generation of electricity.
17	The effects of several factors on pretreatment were investigated for optimizing the conditions.
18	Enzymatic conversion of cellulose and xylan were about 80% and 45% after pretreatment of
19	wheat straw with 0.25 M PMo ₁₂ , at 95°C for 45 min. FeCl ₃ was found to be an effective liquid
20	mediator to transfer electrons to air, the terminal electron acceptor. By investigating the
21	effects of various operation parameters and cell structural factors, the highest output power
22	density of about 11 mW/ cm^2 was obtained for discharging of the reduced PMo ₁₂ .

Download English Version:

https://daneshyari.com/en/article/4997737

Download Persian Version:

https://daneshyari.com/article/4997737

Daneshyari.com