Accepted Manuscript

Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production

Majid Ebrahimi, Oliver B. Villaflores, Emma E. Ordono, Alvin R. Caparanga

PII:	S0960-8524(16)31784-9
DOI:	http://dx.doi.org/10.1016/j.biortech.2016.12.106
Reference:	BITE 17482
To appear in:	Bioresource Technology
Received Date:	6 November 2016
Revised Date:	28 December 2016
Accepted Date:	29 December 2016

Please cite this article as: Ebrahimi, M., Villaflores, O.B., Ordono, E.E., Caparanga, A.R., Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production, *Bioresource Technology* (2017), doi: http://dx.doi.org/10.1016/j.biortech.2016.12.106

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk
2	on the enzymatic digestibility, structural characteristics, and bioethanol production
3	
4	Majid Ebrahimi ^{a,} *, Oliver B. Villaflores ^b , Emma E. Ordono ^c , Alvin R. Caparanga ^a
5	^a School of Chemical Engineering and Chemistry, Mapúa Institute of Technology,
6	Intramuros, Manila, Philippines
7	^b Research Center for the Natural and Applied Sciences, University of Santo Tomas,
8	Manila, Philippines
9	^c Bioengineering Institute, The University of Auckland, Auckland city New Zealand
10	* Corresponding author: Majid Ebrahimi (E-mail: mebrahimi@mymail.mapua.edu.ph; 3/F
11	NorthWest Building, Mapúa Institute of Technology, Muralla St. Intramuros, Manila 1002,
12	Philippines; Telephone: (+632) 247-5000 loc. 3301, (+632) 527-7021)
13	Abstract
14	Rice husk as an abundant biomass was used in this study, and it contained 30.1%
15	glucan and 13.5% xylan, 22.4% lignin. The pretreated rice husk with glycerol carbonate
16	and acidified aqueous glycerol (10 % water) at 90 °C and 130 °C for 60 min had the
17	maximum yield of glucan digestibility which was 78.2% and 69.7% respectively, using
18	cellulase for 72h. The simultaneous saccharification and fermentation was conducted
19	anaerobically at 37 °C with Saccharomyces cerevisiae, 5% w/v glucan and 10 FPU/g glucan
20	of cellulase. 11.58 and 8.84 g/L was the highest ethanol concentration after 3 days of
21	incubation form pretreated rice husk with glycerol carbonate and acidified aqueous glycerol
22	respectively.

1

Download English Version:

https://daneshyari.com/en/article/4997760

Download Persian Version:

https://daneshyari.com/article/4997760

Daneshyari.com