Accepted Manuscript

Factors affecting on hythane bio-generation via anaerobic digestion of monoethylene glycol contaminated wastewater: inoculum-to-substrate ratio, nitrogen-to-phosphorus ratio and pH

Ahmed Elreedy, Manabu Fujii, Ahmed Tawfik

PII: S0960-8524(16)31432-8

DOI: http://dx.doi.org/10.1016/j.biortech.2016.10.026

Reference: BITE 17181

To appear in: Bioresource Technology

Received Date: 4 August 2016 Revised Date: 6 October 2016 Accepted Date: 9 October 2016

Please cite this article as: Elreedy, A., Fujii, M., Tawfik, A., Factors affecting on hythane bio-generation via anaerobic digestion of mono-ethylene glycol contaminated wastewater: inoculum-to-substrate ratio, nitrogen-to-phosphorus ratio and pH, *Bioresource Technology* (2016), doi: http://dx.doi.org/10.1016/j.biortech.2016.10.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Factors affecting on hythane bio-generation via anaerobic digestion of mono-ethylene glycol contaminated wastewater: inoculum-to-substrate ratio, nitrogen-to-phosphorus ratio and pH

Ahmed Elreedy ^{a,b,*}, Manabu Fujii ^a, Ahmed Tawfik ^b

Department of Civil and Environmental Engineering, Tokyo Institute of Technology,
 Meguro-ku, Tokyo 152-8552, Japan

^b Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg Al-Arab City, Postal Code 21934, Alexandria, Egypt

Abstract

This study aims to assess the effect of inoculum-to-substrate ratio (ISR) and nitrogen-to-phosphorus balance on hythane production from thermophilic anaerobic decomposition of mono-ethylene glycol (MEG) contaminated wastewater. ISRs ranging from 2.65 to 13.23 gVSS/gCOD were employed, whereas the tested N/P ratios varied from 4.6 to 8.5.

Maximum methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCOD_{initial} were achieved at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. HY increased 1.45-fold by decreasing N/P from 8.5 to 4.6, while MY improved 1.6-fold by increasing N/P from 4.6 to 5.5. Methane production was strongly influenced by initial NH₄-N, compared to initial PO₄-P. Optimal HY of 47.55 mL/gCOD_{initial} was achieved at pH 5.0 and ISR of 3.78 gVSS/gCOD using thermal-treated sludge. Three-dimensional regression model was applied for the combined effect of initial MEG, NH₄-N and PO₄-P on hythane

^{*} Corresponding author: (A. Elreedy) <u>elreedy.a.aa@m.titech.ac.jp</u>, and <u>ahmed.elreedy@ejust.edu.eg;</u> (A. Tawfik) ahmed.tawfik@ejust.edu.eg

Download English Version:

https://daneshyari.com/en/article/4997771

Download Persian Version:

https://daneshyari.com/article/4997771

<u>Daneshyari.com</u>