Accepted Manuscript

Influence of temperature and hydraulic retention on the production of vol atile fatty acids during anaerobic fermentation of cow manure and maize silage

Cristina Cavinato, Cinzia Da Ros, Paolo Pavan, David Bolzonella

PII:	S0960-8524(16)31447-X
DOI:	http://dx.doi.org/10.1016/j.biortech.2016.10.041
Reference:	BITE 17196
To appear in:	Bioresource Technology
Received Date:	22 July 2016
Revised Date:	12 October 2016
Accepted Date:	13 October 2016

Please cite this article as: Cavinato, C., Da Ros, C., Pavan, P., Bolzonella, D., Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage, *Bioresource Technology* (2016), doi: http://dx.doi.org/10.1016/j.biortech.2016.10.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Influence of temperature and hydraulic retention on the production of volatile fatty acids
2	during anaerobic fermentation of cow manure and maize silage
3	
4	
5	Cristina Cavinato ^a *, Cinzia Da Ros ^a , Paolo Pavan ^a , David Bolzonella ^b
6 7	
8	^a University Ca' Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics, via Torino
9	155, I-30172 Mestre, Venice, Italy. (cavinato@unive.it)
10	^b University of Verona, Department of Biotechnology, Strada le Grazie 15, I-37134, Verona, Italy.
11	
12	Abstract
13	The aim of this study was to verify the efficiency of a separate hydrolysis step by testing different
14	working temperatures (37° to 55 °C) and hydraulic retention times (two, four and six days) and by
15	evaluating readily biodegradable carbon production. The fermentation products included primarily
16	acetic, propionic and butyric acids. These acids can be easily converted into biogas or can be
17	recovered in a biorefinery approach, for example, to produce polyhydroxyalkanoates. The optimal
18	condition was found by applying an organic loading rate of 17.9 gTVS m ⁻³ with a four-day
19	retention time at 37°C for an acidification yield of 183.2 $gCOD_{VFA} kgVS_{fed}^{-1}$.
20	
21	Keywords
22	fermentation, anaerobic digestion, maize silage, cow manure, volatile fatty acid.
23	
24	* Corresponding author at: University Ca' Foscari of Venice, Department of Environmental Sciences, Informatics and
25	Statistics, via Torino 155, I-30172 Mestre, Venice, Italy. Tel. (39) 0412348909. E-mail address: cavinato@unive.it (C.
26	Cavinato).
2.7	

28

Download English Version:

https://daneshyari.com/en/article/4997790

Download Persian Version:

https://daneshyari.com/article/4997790

Daneshyari.com