Accepted Manuscript

Wastewater treatment high rate algal pond biomass for bio-crude oil production

Abbas Mehrabadi, Rupert Craggs, Mohammed M. Farid

PII: S0960-8524(16)31496-1
DOI: $\quad \mathrm{http}: / / \mathrm{dx}$. doi.org/10.1016/j.biortech.2016.10.082
Reference: BITE 17237
To appear in: Bioresource Technology
Received Date: 8 September 2016
Revised Date: 25 October 2016
Accepted Date: 26 October 2016

Please cite this article as: Mehrabadi, A., Craggs, R., Farid, M.M., Wastewater treatment high rate algal pond biomass for bio-crude oil production, Bioresource Technology (2016), doi: http://dx.doi.org/10.1016/j.biortech.2016.10.082

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Wastewater treatment high rate algal pond biomass for bio-crude oil production

Abbas Mehrabadi ${ }^{\text {a }}$, Rupert Craggs ${ }^{\text {b }}$, Mohammed M. Farid $^{\text {a }}$ *
${ }^{\text {a }}$ Chemical and Materials Engineering Department, University of Auckland, New Zealand (ameh820@aucklanduni.ac.nz, m.farid@auckland.ac.nz)
${ }^{\mathrm{b}}$ National Institute of Water and Atmospheric Research Ltd. (NIWA), PO Box 11-115, Hamilton 3200, New Zealand (Rupert.Craggs@niwa.co.nz)
*Corresponding email address: m.farid @auckland.ac.nz

Abstract

This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry ($2.2 \mathrm{wt} \%$ solid content, $19.7 \mathrm{~kJ} / \mathrm{g} \mathrm{HHV}$) was conducted at a range of temperatures $\left(150-300^{\circ} \mathrm{C}\right)$ for one hour. The bio-crude yield and HHV varied in range of 3.1$24.9 \mathrm{wt} \%$ and $37.5-38.9 \mathrm{~kJ} / \mathrm{g}$, respectively. The bio-crudes were comprised of $71-72.4 \mathrm{wt} \%$ carbon, $0.9-4.8 \mathrm{wt} \%$ nitrogen, $8.7-9.8 \mathrm{wt} \%$ hydrogen and $12-15.7 \mathrm{wt} \%$ oxygen. GC-MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant biocrude compounds. HTL of WWT HRAP biomass resulted, also, in production of $10.5-26 \mathrm{wt} \%$ water-soluble compounds (containing up to $293 \mathrm{mg} / \mathrm{L}$ ammonia), $1.0-9.3 \mathrm{wt} \%$ gas and $44.8-$ $85.5 \mathrm{wt} \%$ solid residue ($12.2-18.1 \mathrm{~kJ} / \mathrm{g}$). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.

Keywords: Microalgae, High rate algal pond, Hydrothermal liquefaction, Bio-crude

https://daneshyari.com/en/article/4997841

Download Persian Version:

https://daneshyari.com/article/4997841

Daneshyari.com

