Accepted Manuscript

Production of bio-oil and biochar from soapstock via microwave-assisted cocatalytic fast pyrolysis

Leilei Dai, Liangliang Fan, Yuhuan Liu, Roger Ruan, Yunpu Wang, Yue Zhou, Yunfeng Zhao, Zhenting Yu

PII: DOI: Reference:	S0960-8524(16)31522-X http://dx.doi.org/10.1016/j.biortech.2016.11.017 BITE 17263
To appear in:	Bioresource Technology
Received Date: Revised Date: Accepted Date:	27 September 20163 November 20164 November 2016

Please cite this article as: Dai, L., Fan, L., Liu, Y., Ruan, R., Wang, Y., Zhou, Y., Zhao, Y., Yu, Z., Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis, *Bioresource Technology* (2016), doi: http://dx.doi.org/10.1016/j.biortech.2016.11.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Production of bio-oil and biochar from soapstock via microwave-
2	assisted co-catalytic fast pyrolysis
3	Leilei Dai ^{a, b} , Liangliang Fan ^{a, b, c} , Yuhuan Liu ^{a, b} , Roger Ruan ^{a, b, c} , Yunpu Wang ^{*a, b} ,
4	Yue Zhou ^{a, b} , Yunfeng Zhao ^{a, b} , Zhenting Yu ^{a, b}
5	^a Nanchang University, Engineering Research Center for Biomass Conversion,
6	Ministry of Education, Nanchang 330047, China
7	^b Nanchang University, State Key Laboratory of Food Science and Technology,
8	Nanchang 330047, China
9	^c Center for Biorefining and Department of Bioproducts and Biosystems Engineering
10	University of Minnesota, 1390 Eckles Ave., St. Paul MN 55108, USA
11	Abstract
12	In this study, production of bio-oil and biochar from soapstock via microwave-
13	assisted co-catalytic fast pyrolysis combining the advantages of in-situ and ex-situ
14	catalysis was performed. The effects of catalyst and pyrolysis temperature on product
15	fractional yields and bio-oil chemical compositions were investigated. From the
16	perspective of bio-oil yield, the optimal pyrolysis temperature was 550 °C. The use of
17	catalysts reduced the water content, and the addition of bentonite increased the bio-oil
18	yield. Up to 84.16 wt.% selectivity of hydrocarbons in the bio-oil was obtained in the
19	co-catalytic process. In addition, the co-catalytic process can reduce the proportion of
20	oxygenates in the bio-oil to 15.84 wt.% and eliminate the N-containing compounds

^{*} Corresponding Author at: MOE, Engineering Research Center for Biomass Conversion, Nanchang Unicersity, 235 Nanjing East Rd., Nanchang, 330047, China. Tel./fax: +8607918833816 *E-mail address*: wangyunpu@ncu.edu.cn (Y. Wang)

Download English Version:

https://daneshyari.com/en/article/4997950

Download Persian Version:

https://daneshyari.com/article/4997950

Daneshyari.com