Accepted Manuscript

Title: Hydrodynamics and mass transfer performance of

Flow-guided Jet Packing Tray

Authors: Miao Zhang, B.Y. Zhang, H.K. Zhao, Yue Zhao, Jun

Sun, Z.Q. Ren, Q.S. Li

PII: S0255-2701(16)30610-9

DOI: http://dx.doi.org/doi:10.1016/j.cep.2017.07.022

Reference: CEP 7041

To appear in: Chemical Engineering and Processing

Received date: 18-11-2016 Revised date: 24-7-2017 Accepted date: 25-7-2017

cite Please this article as: Miao Zhang, B.Y.Zhang, H.K.Zhao, Yue Zhao, Jun Sun, Z.Q.Ren, Q.S.Li, Hydrodynamics and mass transfer performance of Flow-guided Jet Packing Tray, Chemical Engineering and Processinghttp://dx.doi.org/10.1016/j.cep.2017.07.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Hydrodynamics and mass transfer performance of

Flow-guided Jet Packing Tray

Miao Zhang^[1]; BY. Zhang^[1]; HK. Zhao^[1]; Yue Zhao^[2]; Jun Sun^[3]; ZQ. Ren^[1]; QS. Li*^[1]

[1] State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology,

Beijing 100029, China

[2] School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

[3] School of Economics and Management; Beijing University of Chemical Technology, Beijing 100029,

China

*Corresponding E-mail: buctcts@163.com

Highlights

The FJPT consisting a variety of structures was designed.

2. The empirical formulas of pressure drop for the FJPT were established.

3. The hydrodynamics of FJTP was compared with that of New VST.

The effect of the size of cap bottom gap for the tray was studied.

The hydrodynamics and mass transfer perform for the tray was studied.

Abstract

A new flow-guided jet packing tray (FJPT) with high flux and efficiency has been designed in this

paper. Hydrodynamics and mass transfer performance of FJPT, including tray pressure drop, weeping,

entrainment, clear liquid height and tray efficiency, have been studied with cold-flow model experiments

(using water, air and other system other simulation system for the test in the absence of chemical reaction

conditions), using air-water-oxygen system in a 500 mm diameter plexiglass column. According to the

experimental data, the empirical formulas of the FJPT have been established in terms of dry pressure drop

and wet pressure drop. Compared with New Vertical Sieve Tray (New VST), FJPT has lower pressure

drop. The experimental result shows that dry plate pressure drop is independent of the size of the gap,

while bigger cap bottom gap leads to lower wet plate pressure drop and weeping percent, smaller bottom

gap leads to less entrainment and higher tray efficiency. These have provided a good theoretical basis for

the research and development of the compound tray.

1

Download English Version:

https://daneshyari.com/en/article/4998156

Download Persian Version:

https://daneshyari.com/article/4998156

<u>Daneshyari.com</u>