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a  b  s  t  r  a  c  t

The  performance  of  controlled  distributed  parameter  systems  (DPSs)  not  only  depends  on  the  controller,
but also  on  the  dynamic  nature  of  the  process  itself.  One  of  the  primary  factors  affecting  DPS control  is
process  nonlinearity.  In many  situations,  the  extent  and severity  of nonlinearity  is the  crucial  characteris-
tic  in  deciding  whether  linear  system  analysis  and  controller  synthesis  methods  are  adequate.  However,
due  to  their  spatio-temporal  coupling,  traditional  nonlinearity  measures  cannot  be  directly  applied  to
nonlinear  DPSs.  In this  study,  a nonlinearity  measure  method  to quantify  the  severity  of nonlinearity
for  a class  of  DPSs  is proposed.  First,  time/space  separation  and  model  reduction  are  carried  out using
proper  orthogonal  decomposition  (POD).  Thus,  an  optimal  linear  time-invariant  model  with  a  low-order
is  obtained  through  the  optimization  of  a  spatio-temporal  error  while  full state  feedback  is incorporated
in  order  to stabilize  the  linear  model.  Finally,  nonlinearity  quantification  for  DPSs  is  calculated  using the
obtained  stable  linear  time-invariant  system.  The  complexity  of  the  calculations  for  nonlinearity  mea-
sures  is  greatly  reduced  after  the model  reduction  using  POD.  This  method  easily  estimates  the  extent  to
which  the  process  behavior  deviates  from  linearity,  which  aids  in  determining  whether  a  linear  system
analysis  and  controller  synthesis  methods  are  adequate.  The  nonlinearity  quantification  indicates  that
DPSs  with  smaller  values  are  better  approximated  by  a linear  model  than  DPSs  with  larger  values  in  the
target  time/space  domain.  The  effectiveness  of  the proposed  method  is  illustrated  using  two  numerical
examples.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Advanced industrial technological fields, including semi-
conductor manufacturing, chemical engineering, and materials
engineering have a growing demand for control over the flow of
fluid, temperature fields, and product size distributions [1]. Con-
sidering that their input, output, state, and parameters vary both
temporally and spatially, these physical and chemical processes are
known as distributed parameter systems (DPSs) [2–9]. In recent
years, a number of research groups have focused on issues relating
to model reduction and control of DPSs, including Duan [10,11],
Park [12,13], Li [14,15], Christofides [16,17], Xie [18,19] and oth-
ers [20–23]. However, it has become evident that the performance
of the controlled processes not only depends on the controller
but also on the dynamic nature of the process itself. As demon-
strated by Ziegler and Nichols [24], a poor controller is often
capable of an acceptable performance on a well-designed process,
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whereas the finest controller may not deliver the desired perfor-
mance on a poorly designed process. In regards to process design, Lu
[25,27] began to focus on the simplification of the nonlinearity and
complexity of a system. An optimally designed process will have
satisfactory dynamic characters under a suitably designed param-
eter. Thus, the nonlinearity and complexity of process dynamics
needs to be considered and assessed in order to optimize the control
of DPSs.

The effect of process nonlinearity on input/output behaviors is
one of the most relevant factors underlying DPS control problems.
In control engineering, many nonlinear control techniques have
been developed in order to control nonlinear DPSs. However, these
techniques must satisfy many stringent conditions [26], which
often results in them being impracticable. Alternatively, many non-
linear DPSs are often approximated by a linear model since they can
be described very well by this method in the time/space domain
of interest. As a result, many linear control methods can be easily
used to control nonlinear DPSs [27]. When using these alternative
approaches, the extent and severity of the inherent nonlinearity of
a system is the crucial characteristic when deciding whether a lin-
ear system analysis and controller synthesis methods are adequate
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[28]. Recently, many studies have contributed to the nonlinearity
measurement, which is used to estimate the extent to which the
process behavior deviates from linearity [29].

The fundamental idea underlying all nonlinearity measures is
to compare the properties of the existing nonlinear system with
another linear system in an appropriate norm. Nonlinearity mea-
sures were first proposed by Desoer and Wang [30] in order to
quantify the degree of nonlinearity in the input-output mapping
of a system. Nikolaou [31,32] and colleagues evaluated the dif-
ference between the best linear model for different inputs and
nonlinear systems. Allgower [33,34] also performed an evaluation
of the poorest input signals, which can be computed using func-
tional expansions [35]. Guay et al. [36,37] quantified both steady
and dynamic nonlinearities using curvature matrices. Sun and Hoo
[26] measured the nonlinearity of single input-single output (SISO)
systems by calculating the upper and lower linear boundaries of
nonlinear systems. Hahn and Edgar [38] introduced a gramian-
based approach to nonlinearity quantification in order to measure
the nonlinearity of a control-affine process over a given operating
region. However, until now, there have been few reports of applica-
tions of nonlinearity measures to DPSs; this is likely due to the fact
that traditional nonlinearity measures do not have spatio-temporal
natures. Although the methods described above have numerous
applications for nonlinearity quantification of dynamical systems,
they are restricted to the temporal domain.

The main objective of this work was to develop a nonlinearity
quantification method for a class of nonlinear DPSs that provides
both the magnitude of the spatio-temporal modeling error and an
optimal linear model. This stable linear model can be used to design
a relatively simple and easy-realization controller in the presence
of a nonlinear modeling error. Nonlinearity quantification calcula-
tions involve several steps. First, model reduction for a nonlinear
DPS is carried out using POD, while empirical eigenfunctions (EEFs)
and a low-dimensional nonlinear ODE system can be derived simul-
taneously. Using specified random input signals, the best linear
model is then obtained using the PSO method for a spatio-temporal
error while full state feedback is incorporated during the optimiza-
tion process in order to stabilize the linear time-invariant model.
Finally, the stable linear time-invariant system obtained is used to
calculate the value of nonlinearity measures for DPSs. The compu-
tation complexity is reduced using POD for model reduction, and
the nonlinearity quantification indicates that DPSs with smaller
values are better approximated by a linear model than DPSs with
larger values in the target time/space domain. The effectiveness of
the proposed method is illustrated in the two following numeri-
cal examples. The results show that the two DPSs have different
degrees of nonlinearity in the target time/space domain.

2. The definition of nonlinearity quantification

The assumption is made that a class of nonlinear DPSs is gov-
erned by a partial differential equation (PDE) with following state
description:

∂X (z, t)
∂t

= ∂
∂z

(
D (X (z, t))

∂X (z, t)
∂z

)

−v (X (z, t))
∂X (z, t)
∂z

+ F (X (z,  t)) + U (z, t) (1)

Eq. (1) is considered on a bounded spatial domain � and is sub-
ject to a number of boundaries and initial conditions. t ∈ [0, ∞)
is the time variable, z ∈  ̋ = [0, M]  is the spatial coordinate, and
only one spatial-dimension is considered. X(z, t) is the vector of
the state variable and D(X(z, t)) and v(X(z, t)) are functions of X(z,
t).U(z, t) =

∑p
i=1ui(t)hi(z) denotes the vector of the manipulated

spatio-temporal input, where ui(t) and hi(z) denote the temporal

Fig. 1. Setup for the comparison of a nonlinear system and a linear system.

input and corresponding spatial distribution, respectively. F(X(z, t))
is a nonlinear function containing spatial derivatives for X(z, t).

Nonlinearity measures represent an approach to systematically
quantify the extent of the nonlinearity in a dynamical system. The
concept underlying nonlinearity measures is based on the distance
between a nonlinear operator and a suitable linear operator. In
other words, the fundamental objective of all nonlinearity mea-
sures is to compare the properties of the nonlinear system of
interest with a given linear system in an appropriate setup. The
most common setup is depicted in Fig. 1.

The signals U(z, t), N(U) and L(U) represent the spatio-temporal
input and the trajectories of the nonlinear and linear systems,
respectively. Without a loss of generality, it is assumed that the
operating points of two  systems are both 0. The error signal is
set as the difference between that of the nonlinear system and
the trajectory of the linear system, which contains the informa-
tion regarding how well the nonlinear system is approximated by
the linear model. In order to quantify this error, a norm of the
spatio-temporal domain is defined as follows:

‖X (z, t) ‖ =

√∫
˝

∫ ∞

0

|X (z, t) |2dtdz (2)

The following definition of the nonlinear measure of Eq. (1) for
quantification is used:

ıN = inf
L ∈ �

sup
U ∈ �

‖N (U) ‖ /= 0

‖N (U) − L (U) ‖
‖N (U) ‖ (3)

ıN represents the norm of the error of trajectories when the
worst case input U ∈ � is considered to excite the nonlinear DPSs,
while � is the set of input signals. The best approximation of L(U) is
chosen among the set of all causal stable linear systems �,  such that
the resulting worst case error is minimized, and � denotes the set
of all of the linear systems. The notion of nonlinearity measures was
first proposed for the ordinary differential equation (ODE) system
[30], in which nonlinearity quantification was defined for nonlinear
dynamical systems.

Multiple types of signals with given spatial distributions in � can
be used as the spatio-temporal inputs for the DPSs (1). In this paper,
the random temporal inputs with given spatial distributions are
considered to excite the DPSs, and nonlinearity quantification can
be computed under this input condition. This results in a simpler
nonlinearity measure definition, which may  be more suitable in
numerical calculations.

ıN = inf
L ∈ �

‖N (U) − L (U) ‖
‖N (U) ‖ (4)

The ıN represents the “relative error” of the output of the linear
model L (U) that best approximates the nonlinear system N (U).  If
ıN = 0, then the behaviors of a nonlinear system N (U) can be repro-
duced by a linear system L (U) for the given input U. Conversely, if
N (U) is linear for the given input U, then the best linear approxima-
tion is N (U) = L (U),  and the nonlinearity measure becomes zero.
On the other hand, it is always possible to use a linear approxima-
tion for the linear system that yields a zero output (zero operator)
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