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a  b  s  t  r  a  c  t

A  composite  multiple-model  approach  based  on  multivariate  Gaussian  process  regression  (MGPR)  with
correlated  noises  is proposed  in  this  paper.  In  complex  industrial  processes,  observation  noises  of mul-
tiple  response  variables  can  be correlated  with  each  other  and  process  is nonlinear.  In  order  to  model
the  multivariate  nonlinear  processes  with  correlated  noises,  a  dependent  multivariate  Gaussian  process
regression  (DMGPR)  model  is developed  in this  paper.  The  covariance  functions  of  this DMGPR  model
are  formulated  by  considering  the  “between-data”  correlation,  the  “between-output”  correlation,  and  the
correlation  between  noise  variables.  Further,  owing  to the  complexity  of nonlinear  systems  as  well  as  pos-
sible  multiple-mode  operation  of the industrial  processes,  to improve  the  performance  of the  proposed
DMGPR  model,  this  paper  proposes  a composite  multiple-model  DMGPR  approach  based  on  the  Gaus-
sian  Mixture  Model  algorithm  (GMM-DMGPR).  The  proposed  modelling  approach  utilizes  the  weights
of  all  the  samples  belonging  to  each  sub-DMGPR  model  which  are  evaluated  by utilizing  the GMM algo-
rithm  when  estimating  model  parameters  through  expectation  and  maximization  (EM)  algorithm.  The
effectiveness  of  the  proposed  GMM-DMGPR  approach  is demonstrated  by  two  numerical  examples  and
a three-level  drawing  process  of Carbon  fiber  production.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Data-driven approaches have received a great attention in
recent years and have found many applications in various engineer-
ing fields, such as fault-tolerant control [1], process monitoring [2]
and system identification [3–5]. Data-driven modelling has been
widely utilized in system identification due to the complexity of
the first-principle models [3–5]. The Gaussian process regression
(GPR) algorithm is a data-driven modelling approach in the field
of machine learning, and has a found good adaptability to high
dimension, small sample set, and nonlinear problems [6–8]. The
popularity of GPR is partly due to its solid theoretical basis in
Bayesian Statistics, and partly because its hyper-parameters can be
adaptively acquired [9,10]. In addition, it has a strong generaliza-
tion ability and convenience of implementation [7,9,11]. Owing to
these advantages, the GPR algorithm has been widely used in sys-
tem identification [12], response surface modelling [13], dynamic
process modelling [14,15], ensemble learning [16], and other appli-
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cation fields [4,17,18]. Various empirical modelling results have
demonstrated superiority of the GPR model to other supervised
regression models such as support vector machine, fuzzy model,
and neural networks, due to its good prediction accuracy along
with ability to provide probability distribution of the predictions
[7,13,15,19].

Owing to the computational complexity in the GPR model, the
Gaussian process is commonly considered under the univariate
GPR modelling framework. However, most of the existing indus-
trial processes are multivariate rather than univariate. To model
multivariate Gaussian processes, some GPR modelling approaches
have also been developed in the literatures [20–24]. A pragmatic
and straightforward approach is to model multiple outputs inde-
pendently without considering their correlation. Although this is
not the most ideal approach, it has been used in some practical
applications [13,19,20]. However, in order to improve prediction
accuracy of the multivariate GPR model, one should consider not
only the correlation between data points, but also the correlation
between the output functions [21–24].

Furthermore, the existing multivariate GPR modelling
approaches commonly assume the independent Gaussian white
noises without considering the correlation between noises that

http://dx.doi.org/10.1016/j.jprocont.2017.08.004
0959-1524/© 2017 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jprocont.2017.08.004
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2017.08.004&domain=pdf
mailto:bhuang@ualberta.ca
mailto:ysding@dhu.edu.cn
dx.doi.org/10.1016/j.jprocont.2017.08.004


12 X. Hong et al. / Journal of Process Control 58 (2017) 11–22

affect different output variables [7,25]. However, in real industrial
processes, the noises affecting multiple output variables can be
correlated with each other due to reasons such as variation of
the ambient conditions, correlation of the sensors etc. In this
paper, we model multivariate Gaussian processes with correlated
Gaussian noises; that is, different output variables are corrupted
by different Gaussian noises, and there are correlation between
these noises, so that a dependent multivariate Gaussian process
regression (DMGPR) model is developed. A key to the proposed
DMGPR model is the formulation of the covariance function, which
describes the “between-data” covariance, the “between-output”
covariance, as well as the covariance between correlated noises.

In addition, owing to the complexity of nonlinear systems and
the nature of multi-mode operations in industrial processes, the
single MGPR model may  not be capable of achieving good pre-
diction results in general. The multiple-model approach is an
effective modelling approach which improves prediction accuracy
and robustness of the model. In recent years, this approach has
been widely studied in the field of system identification and intel-
ligent control [26–28], and has been successfully applied in many
industrial processes, such as maneuvering target tracking [29,30],
prediction of silicon content in hot metal [31], and industrial pro-
cess modelling in multiple operating environments [32] among
others. In this paper, to improve prediction performance of the pro-
posed DMGPR model, we will use the multiple-model approach
to optimize the DMGPR model, and propose a GMM-DMGPR
modelling approach which considers multiple DMGPR models by
employing the GMM  algorithm to classify the samples. The GMM
algorithm is a clustering method which clusters data to multi-
ple Gaussian components and calculates the probability of data
belonging to each component [32,33]. Then, these probabilities
are considered as the weights of the data in multiple sub-DMGPR
models when estimating hyper-parameters of the composite
GMM-DMGPR model through expectation and maximization (EM)
algorithm. Hence, unlike the traditional multiple-model approach
which models each sub-model with only the classified sam-
ples [26–28,32], the proposed GMM-DMGPR approach improves
prediction accuracy by using all sampled data to model each sub-
DMGPR model along with the weights of these samples belonging
to each sub-model.

The main contributions of this paper are as follows: (i) a depen-
dent multivariate Gaussian process regression (DMGPR) model
with correlated noises is developed; (ii) a composite multiple-
model approach is considered to optimize the DMGPR model; (iii)
the GMM-DMGPR modelling approach is proposed by utilizing the
GMM  algorithm to cluster data along with their weights.

The rest of the paper is organized as follows: In Section 2, a
traditional MGPR model with independent Gaussian white noise
is revisited. In Section 3, a DMGPR model with correlated Gaus-
sian noises is developed, and a GMM-DMGPR modelling approach
is proposed. A verification of the performance of the GMM-DMGPR
approach is performed in Section 4 by employing numerical exam-
ples and a three-level drawing of a Carbon fiber example. In Section
5, conclusions are presented.

2. Revisit of traditional MGPR model

The multivariate GPR model with independent Gaussian noise
can be described by the following equation:

Y(X) = F(X) + E (1)

where X( ∈ R
d) represents the input vector, Y = [y1, · · ·, yq]( ∈

R
q) is the corresponding output vector at X, F(·) denotes an latent

function, and F(X) =
[
f1(X), · · ·, fq(X)

]
( ∈ R

q) is the latent func-
tion vector at X. Here, F(X) is assumed to follow a q-variate joint

Gaussian distribution with mean 0 and covariance matrix Bq, that
is, F(X) ∼ Gq(0, Bq), where Bq is a q × q symmetric matrix which
describes the correlation between outputs, and has the following
equation:

Bq =

⎡
⎢⎢⎢⎢⎣
b11 b12 · · · b1q

b21 b22 · · · b2q

...
...

. . .
...

bq1 bq2 · · · bqq

⎤
⎥⎥⎥⎥⎦ (2)

where element bgh in (2) represents the covariance between output
variables fg(X) and fh(X), g, h = 1, · · · , q. In addition, E =

[
ε1, · · ·,  εq

]
represents the noise vector, and each element εg(g = 1, · · · , q) is
assumed to be an independent Gaussian white noise with mean
0 and variance �2

g , g = 1, · · · , q. That means the observation noise εg

of each output variable yg follows an independent Gaussian distri-
bution as εg∼N(0, �2

g ); consequently, E follows the joint Gaussian
distribution as E ∼ G(0, Sq). Owing to the independence among q
noises ε1, · · · , εq, the noise covariance matrix Sq can be described
as a q × q diagonal matrix, i.e. Sq = diag(�2

1 , · · ·,  �2
q ).

We consider a sample set
{
Xi, Yi

}n
i=1

, where n denotes the num-

ber of given samples, Xi( ∈ R
d) and Yi = [yi1, · · ·,  yiq]( ∈ R

d) are the
input and output at sampling instant i, respectively. Under the
assumption of the Gaussian process, for the output of the dimension
g(= 1, · · · , q), the n latent function values fg(X) =

{
fg(X1), · · ·,  fg(Xn)

}
follow a Gaussian process with mean 0 and a covariance function
k(X, X′) = Cov(fg(X), fg(X′)), that is, fg(X) ∼ GP(0, k(X, X′)). So, the Gaus-
sian process prior of the n latent function values fg(X) = [fg(X1), · · · ,
fg(Xn)]T can be written as fg(X) ∼ N(0, Kn), where Kn represents an
n × n covariance matrix which describes the correlation between
different sample points and is formulated by employing the covari-
ance function k(X, X′) as the following equation:

Kn =

⎡
⎢⎢⎢⎢⎣
k(X1, X1) k(X1, X2) ·  · · k(X1, Xn)

k(X2, X1) k(X2, X2) · · · k(X2, Xn)

...
...

. . .
...

k(Xn, X1) k(Xn, X2) · · · k(Xn, Xn)

⎤
⎥⎥⎥⎥⎦ (3)

where element k(Xi, Xj) in (3) represents the covariance between
function values fg(Xi) and fg(Xj), i, j = 1, · · · , n. To simplify the imple-
mentation, we consider a squared exponential function to describe
the covariance function k(X, X′) as given below [7,11]:

k(X, X ′) = �2
f exp

(
−

d∑
h=1

(xh − xh
′)2

2l2
h

)
(4)

where h(= 1, · · · , d) is the input dimension index, xh and x′
h repre-

sent the h-th dimension of inputs X ∈ R
d and X ′ ∈ R

d, respectively.
�2
f

denotes the magnitude or signal variance of the covariance func-
tion, and lh is the characteristic length-scale corresponding to the
h-th input dimension.

Owing to the Gaussian process assumption, F(X) ∼ Gq(0, Bq) and

fg(X) ∼ N(0, Kn), the n × q latent function vector [FT (X1), · · ·,  FT (Xn)]
T

follows a matrix Gaussian distribution MN(0, Kn, Bq), consid-
ering the “between-data” correlation and the “between-output”
correlation simultaneously. Consequently, the distribution of
[FT (X1), · · ·,  FT (Xn)]

T
can be described as follows [21]:

[FT (X1), · · ·,  FT (Xn)]
T∼Gnq

(
0, Bq ⊗ Kn

)
(5)
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